IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v36y2011i10p2589-2592.html
   My bibliography  Save this article

Photocatalytic decomposition of H2S to produce H2 over CdS nanoparticles formed in HY-zeolite pore

Author

Listed:
  • Bai, Xue-feng
  • Cao, Ying
  • Wu, Wei

Abstract

The H2 production rate from H2S photocatalytic decomposition under visible light irradiation (λ > 400 nm) over CdS nanoparticules formed in HY-zeolite pore (named CdS/HY) was much higher compared to the commercial bulk CdS. The CdS/HY photocatalyst was characterized by UV–Vis, XRD, FT-IR, N2 adsorption, SEM and HRTEM. The blue shift from bulk which confirmed CdS nanoparticles located in the pore of HY-Zeolite (named HY). Photocatalytic activity and surface area were enhanced by such structures.

Suggested Citation

  • Bai, Xue-feng & Cao, Ying & Wu, Wei, 2011. "Photocatalytic decomposition of H2S to produce H2 over CdS nanoparticles formed in HY-zeolite pore," Renewable Energy, Elsevier, vol. 36(10), pages 2589-2592.
  • Handle: RePEc:eee:renene:v:36:y:2011:i:10:p:2589-2592
    DOI: 10.1016/j.renene.2010.04.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110002041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.04.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. Preethi, 2023. "Solar hydrogen production in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2105-2135, March.
    2. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production," Applied Energy, Elsevier, vol. 208(C), pages 905-919.
    3. Ipsakis, Dimitris & Kraia, Tzouliana & Konsolakis, Michalis & Marnellos, George, 2018. "Remediation of Black Sea ecosystem and pure H2 generation via H2S-H2O co-electrolysis in a proton-conducting membrane cell stack reactor: A feasibility study of the integrated and autonomous approach," Renewable Energy, Elsevier, vol. 125(C), pages 806-818.
    4. Su, En-Chin & Huang, Bing-Shun & Liu, Chao-Chang & Wey, Ming-Yen, 2015. "Photocatalytic conversion of simulated EDTA wastewater to hydrogen by pH-resistant Pt/TiO2–activated carbon photocatalysts," Renewable Energy, Elsevier, vol. 75(C), pages 266-271.
    5. Ruban, Priya & Sellappa, Kanmani, 2014. "Development and performance of bench-scale reactor for the photocatalytic generation of hydrogen," Energy, Elsevier, vol. 73(C), pages 926-932.
    6. Lou, Minghe & Wang, Ruoyu & Song, Haitao, 2024. "Advances and challenges toward efficient utilization of H2S for H2 production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    More about this item

    Keywords

    Photocatalysis; H2 production; H2S decomposition; CdS;
    All these keywords.

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:36:y:2011:i:10:p:2589-2592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.