IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v125y2018icp806-818.html
   My bibliography  Save this article

Remediation of Black Sea ecosystem and pure H2 generation via H2S-H2O co-electrolysis in a proton-conducting membrane cell stack reactor: A feasibility study of the integrated and autonomous approach

Author

Listed:
  • Ipsakis, Dimitris
  • Kraia, Tzouliana
  • Konsolakis, Michalis
  • Marnellos, George

Abstract

The present work explores the feasibility of an integrated and autonomous scaled up process towards the remediation of the Black Sea ecosystem with simultaneous H2 generation through the co-electrolysis of rich H2S/H2O seawater mixtures. The core unit of the proposed process is a proton-conducting membrane cell stack reactor (electrolyzer), where H2S in excess H2O mixtures are fed at the anode and co-electrolyzed to protons (H+), which are transferred through the electrolyte to the inert exposed cathode towards H2 generation. The proposed scaled-up process aims towards a Black Sea water intake of up to 2000 tn/hr and involves four distinct operating steps, i.e.: i) pumping Black Sea water from 1 km depth (H2S∼14 ppm) and H2S concentration enrichment up to 1 v/v% H2S-H2O, ii) Η2 production through H2S-H2O co-electrolysis at 850 °C and 2 bar, iii) purification and separation of the proton-conducting electrochemical membrane reactor effluent (H2 and SO2) and iv) H2SO4 production from off-gases. Overall heat management is accomplished through a natural gas high pressure burner along with flue gas power recovery (combined cycle) and the process system is assessed in terms of operating flexibility, electrical/heat requirements and economic perspectives. As was revealed, the decreased concentration of H2S/H2O mixtures (from 1 to 0.1 v/v%) results in a higher H2 and H2SO4 generation at the expense of higher heating/electrical demands, whereas the variation on the Black Sea water intake (from 650 to 1950 tn/hr) can be appropriately adjusted to regulate the corresponding operating costs. Based on a parametric sensitivity analysis, it was revealed that a H2S concentration of 1 v/v% and a water intake flow corresponding to a hydrogen production of >40 kg/h can promise favorable financial perspectives. The minimum products sale values that ensure the feasibility of the process along with a flexible heat and energy autonomy were identified at 9.85 €/kg of H2, 0.45 €/kg of H2SO4 and 0.277 €/kWh of produced electricity. Partial subsidy on the total fixed capital investment can further result in a substantial improvement of the investment's operating profitability.

Suggested Citation

  • Ipsakis, Dimitris & Kraia, Tzouliana & Konsolakis, Michalis & Marnellos, George, 2018. "Remediation of Black Sea ecosystem and pure H2 generation via H2S-H2O co-electrolysis in a proton-conducting membrane cell stack reactor: A feasibility study of the integrated and autonomous approach," Renewable Energy, Elsevier, vol. 125(C), pages 806-818.
  • Handle: RePEc:eee:renene:v:125:y:2018:i:c:p:806-818
    DOI: 10.1016/j.renene.2018.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kyriakarakos, George & Dounis, Anastasios I. & Arvanitis, Konstantinos G. & Papadakis, George, 2012. "A fuzzy logic energy management system for polygeneration microgrids," Renewable Energy, Elsevier, vol. 41(C), pages 315-327.
    2. Yıldırım, Elif & Ince, Orhan & Aydin, Sevcan & Ince, Bahar, 2017. "Improvement of biogas potential of anaerobic digesters using rumen fungi," Renewable Energy, Elsevier, vol. 109(C), pages 346-353.
    3. Bai, Xue-feng & Cao, Ying & Wu, Wei, 2011. "Photocatalytic decomposition of H2S to produce H2 over CdS nanoparticles formed in HY-zeolite pore," Renewable Energy, Elsevier, vol. 36(10), pages 2589-2592.
    4. El-Melih, A.M. & Al Shoaibi, A. & Gupta, A.K., 2016. "Hydrogen sulfide reformation in the presence of methane," Applied Energy, Elsevier, vol. 178(C), pages 609-615.
    5. Maizonnasse, Mark & Plante, Jean-Sébastien & Oh, David & Laflamme, Claude B., 2013. "Investigation of the degradation of a low-cost untreated biogas engine using preheated biogas with phase separation for electric power generation," Renewable Energy, Elsevier, vol. 55(C), pages 501-513.
    6. Ale, B.B. & Bade Shrestha, S.O., 2009. "Introduction of hydrogen vehicles in Kathmandu Valley: A clean and sustainable way of transportation," Renewable Energy, Elsevier, vol. 34(6), pages 1432-1437.
    7. Meier, L. & Barros, P. & Torres, A. & Vilchez, C. & Jeison, D., 2017. "Photosynthetic biogas upgrading using microalgae: Effect of light/dark photoperiod," Renewable Energy, Elsevier, vol. 106(C), pages 17-23.
    8. Grueger, Fabian & Möhrke, Fabian & Robinius, Martin & Stolten, Detlef, 2017. "Early power to gas applications: Reducing wind farm forecast errors and providing secondary control reserve," Applied Energy, Elsevier, vol. 192(C), pages 551-562.
    9. Kristjanpoller, Fredy & Crespo, Adolfo & Barberá, Luis & Viveros, Pablo, 2017. "Biomethanation plant assessment based on reliability impact on operational effectiveness," Renewable Energy, Elsevier, vol. 101(C), pages 301-310.
    10. Sreepathi, Bhargava Krishna & Rangaiah, G.P., 2014. "Improved heat exchanger network retrofitting using exchanger reassignment strategies and multi-objective optimization," Energy, Elsevier, vol. 67(C), pages 584-594.
    11. Tappen, S.J. & Aschmann, V. & Effenberger, M., 2017. "Lifetime development and load response of the electrical efficiency of biogas-driven cogeneration units," Renewable Energy, Elsevier, vol. 114(PB), pages 857-865.
    12. Uzlu, Ergun & Akpınar, Adem & Kömürcü, Murat İhsan, 2011. "Restructuring of Turkey’s electricity market and the share of hydropower energy: The case of the Eastern Black Sea Basin," Renewable Energy, Elsevier, vol. 36(2), pages 676-688.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ipsakis, Dimitris & Varvoutis, Georgios & Lampropoulos, Athanasios & Papaefthimiou, Spiros & Marnellos, George E. & Konsolakis, Michalis, 2021. "Τechno-economic assessment of industrially-captured CO2 upgrade to synthetic natural gas by means of renewable hydrogen," Renewable Energy, Elsevier, vol. 179(C), pages 1884-1896.
    2. Qian, Guangfu & Mo, Yanshan & Yu, Chen & Zhang, Hao & Yu, Tianqi & Luo, Lin & Yin, Shibin, 2020. "Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction," Renewable Energy, Elsevier, vol. 162(C), pages 2190-2196.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Yu, Xinlei & Li, Hongjun & Guo, Qinghua & Dai, Zhenghua & Yu, Guangsuo & Wang, Fuchen, 2017. "Detailed kinetic modeling of homogeneous H2S-CH4 oxidation under ultra-rich condition for H2 production," Applied Energy, Elsevier, vol. 208(C), pages 905-919.
    2. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    3. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    4. Krzysztof Gaska & Agnieszka Generowicz & Anna Gronba-Chyła & Józef Ciuła & Iwona Wiewiórska & Paweł Kwaśnicki & Marcin Mala & Krzysztof Chyła, 2023. "Artificial Intelligence Methods for Analysis and Optimization of CHP Cogeneration Units Based on Landfill Biogas as a Progress in Improving Energy Efficiency and Limiting Climate Change," Energies, MDPI, vol. 16(15), pages 1-19, July.
    5. Clarke, Will Challis & Brear, Michael John & Manzie, Chris, 2020. "Control of an isolated microgrid using hierarchical economic model predictive control," Applied Energy, Elsevier, vol. 280(C).
    6. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    8. Evangelos S. Chatzistylianos & Georgios N. Psarros & Stavros A. Papathanassiou, 2024. "Insights from a Comprehensive Capacity Expansion Planning Modeling on the Operation and Value of Hydropower Plants under High Renewable Penetrations," Energies, MDPI, vol. 17(7), pages 1-29, April.
    9. Malla, Sunil, 2014. "Assessment of mobility and its impact on energy use and air pollution in Nepal," Energy, Elsevier, vol. 69(C), pages 485-496.
    10. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    11. Wang, Yufei & Zhan, Shihui & Feng, Xiao, 2015. "Optimization of velocity for energy saving and mitigating fouling in a crude oil preheat train with fixed network structure," Energy, Elsevier, vol. 93(P2), pages 1478-1488.
    12. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Bücker, Francielle & Marder, Munique & Peiter, Marina Regina & Lehn, Daniel Neutzling & Esquerdo, Vanessa Mendonça & Antonio de Almeida Pinto, Luiz & Konrad, Odorico, 2020. "Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system," Renewable Energy, Elsevier, vol. 147(P1), pages 798-805.
    14. Manzano-Agugliaro, Francisco & Taher, Myriam & Zapata-Sierra, Antonio & Juaidi, Adel & Montoya, Francisco G., 2017. "An overview of research and energy evolution for small hydropower in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 476-489.
    15. Mehmet Muzaffer Sandalc?, 2024. "The Modelling of Potential Evapotranspiration Based on Climate Data Using Empirical and Heuristic Methods," Proceedings of International Academic Conferences 14816441, International Institute of Social and Economic Sciences.
    16. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    17. Wu, Angjian & Li, Xiaodong & Yan, Jianhua & Yang, Jian & Du, Changming & Zhu, Fengsen & Qian, Jinyuan, 2017. "Co-generation of hydrogen and carbon aerosol from coalbed methane surrogate using rotating gliding arc plasma," Applied Energy, Elsevier, vol. 195(C), pages 67-79.
    18. Van-Hai Bui & Akhtar Hussain & Thai-Thanh Nguyen & Hak-Man Kim, 2021. "Multi-Objective Stochastic Optimization for Determining Set-Point of Wind Farm System," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    19. Larscheid, Patrick & Lück, Lara & Moser, Albert, 2018. "Potential of new business models for grid integrated water electrolysis," Renewable Energy, Elsevier, vol. 125(C), pages 599-608.
    20. van Leeuwen, Charlotte & Mulder, Machiel, 2018. "Power-to-gas in electricity markets dominated by renewables," Applied Energy, Elsevier, vol. 232(C), pages 258-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:125:y:2018:i:c:p:806-818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.