IDEAS home Printed from https://ideas.repec.org/p/qld/uqeemg/7-2010.html
   My bibliography  Save this paper

Future prospects of microalgal biofuel production systems

Author

Listed:
  • Evan Stephens

    (University of Queensland)

  • Ian Ross

    (University of Queensland)

  • Jan H. Mussgnug

    (University of Bielefeld)

  • Liam Wagner

    (Department of Economics, University of Queensland)

  • Michael A. Borowitzka

    (Murdoch University)

  • Clemens Posten

    (University of Karlsruhe)

  • Olaf Kruse

    (University of Bielefeld)

  • Ben Hankamer

    (University of Bielefeld)

Abstract

Climate change mitigation, economic growth and stability, and the ongoing depletion of oil reserves are all major drivers for the development of economically rational, renewable energy technology platforms. Microalgae have re-emerged as a popular feedstock for the production of biofuels and other more valuable products. Even though integrated microalgal production systems have some clear advantages and present a promising alternative to highly controversial first generation biofuel systems, the associated hype has often exceeded the boundaries of reality. With a growing number of recent analyses demonstrating that despite the hype, these systems are conceptually sound and potentially sustainable given the available inputs, we review the research areas that are key to attaining economic reality and the future development of the industry.

Suggested Citation

  • Evan Stephens & Ian Ross & Jan H. Mussgnug & Liam Wagner & Michael A. Borowitzka & Clemens Posten & Olaf Kruse & Ben Hankamer, 2010. "Future prospects of microalgal biofuel production systems," Energy Economics and Management Group Working Papers 7-2010, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqeemg:7-2010
    DOI: 10.1016/j.tplants.2010.06.003
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1016/j.tplants.2010.06.003
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.tplants.2010.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramachandra, T.V. & Saranya, G., 2022. "Sustainable Bioeconomy prospects of diatom biorefineries in the Indian west coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Cerón-García, M.C. & Macías-Sánchez, M.D. & Sánchez-Mirón, A. & García-Camacho, F. & Molina-Grima, E., 2013. "A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source," Applied Energy, Elsevier, vol. 103(C), pages 341-349.
    3. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    4. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    5. Chung, Young-Soo & Lee, Jin-Woo & Chung, Chung-Han, 2017. "Molecular challenges in microalgae towards cost-effective production of quality biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 139-144.
    6. Adenle, Ademola A. & Haslam, Gareth E. & Lee, Lisa, 2013. "Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries," Energy Policy, Elsevier, vol. 61(C), pages 182-195.
    7. Aleixandre-Tudó, José Luis & Castelló-Cogollos, Lourdes & Aleixandre, José Luis & Aleixandre-Benavent, Rafael, 2019. "Renewable energies: Worldwide trends in research, funding and international collaboration," Renewable Energy, Elsevier, vol. 139(C), pages 268-278.
    8. Yaoyang, Xu & Boeing, Wiebke J., 2013. "Mapping biofuel field: A bibliometric evaluation of research output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 82-91.
    9. Michael Borowitzka & Navid Moheimani, 2013. "Sustainable biofuels from algae," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(1), pages 13-25, January.
    10. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.
    11. Patryk Ratomski & Małgorzata Hawrot-Paw & Adam Koniuszy, 2021. "Utilisation of CO 2 from Sodium Bicarbonate to Produce Chlorella vulgaris Biomass in Tubular Photobioreactors for Biofuel Purposes," Sustainability, MDPI, vol. 13(16), pages 1-10, August.
    12. Naveed, Muhammad Hamza & Khan, Muhammad Nouman Aslam & Mukarram, Muhammad & Naqvi, Salman Raza & Abdullah, Abdullah & Haq, Zeeshan Ul & Ullah, Hafeez & Mohamadi, Hamad Al, 2024. "Cellulosic biomass fermentation for biofuel production: Review of artificial intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Rosli, Siti Suhailah & Amalina Kadir, Wan Nadiah & Wong, Chung Yiin & Han, Fon Yee & Lim, Jun Wei & Lam, Man Kee & Yusup, Suzana & Kiatkittipong, Worapon & Kiatkittipong, Kunlanan & Usman, Anwar, 2020. "Insight review of attached microalgae growth focusing on support material packed in photobioreactor for sustainable biodiesel production and wastewater bioremediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Eloka-Eboka, Andrew C. & Inambao, Freddie L., 2017. "Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production," Applied Energy, Elsevier, vol. 195(C), pages 1100-1111.
    15. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    16. Telles, E.C. & Yang, S. & Vargas, J.V.C. & Dias, F.G. & Ordonez, J.C. & Mariano, A.B. & Chagas, M.B. & Davis, T., 2018. "A genset and mini-photobioreactor association for CO2 capturing, enhanced microalgae growth and multigeneration," Renewable Energy, Elsevier, vol. 125(C), pages 985-994.
    17. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    18. Rawat, I. & Ranjith Kumar, R. & Mutanda, T. & Bux, F., 2013. "Biodiesel from microalgae: A critical evaluation from laboratory to large scale production," Applied Energy, Elsevier, vol. 103(C), pages 444-467.
    19. Ishika, Tasneema & Moheimani, Navid R. & Bahri, Parisa A., 2017. "Sustainable saline microalgae co-cultivation for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 356-368.

    More about this item

    Keywords

    biofuels; algal biofuels; alternative energy;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqeemg:7-2010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/eemuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.