IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v4y2019i10d10.1038_s41560-019-0474-3.html
   My bibliography  Save this article

All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents

Author

Listed:
  • Xiulin Fan

    (University of Maryland
    Zhejiang University)

  • Xiao Ji

    (University of Maryland)

  • Long Chen

    (University of Maryland)

  • Ji Chen

    (University of Maryland)

  • Tao Deng

    (University of Maryland)

  • Fudong Han

    (University of Maryland)

  • Jie Yue

    (University of Maryland)

  • Nan Piao

    (University of Maryland)

  • Ruixing Wang

    (University of Maryland)

  • Xiuquan Zhou

    (University of Maryland)

  • Xuezhang Xiao

    (Zhejiang University)

  • Lixin Chen

    (Zhejiang University)

  • Chunsheng Wang

    (University of Maryland
    University of Maryland)

Abstract

Carbonate electrolytes are commonly used in commercial non-aqueous Li-ion batteries. However, the high affinity between the solvents and the ions and high flammability of the carbonate electrolytes limits the battery operation temperature window to −20 to + 50 °C and the voltage window to 0.0 to 4.3 V. Here, we tame the affinity between solvents and Li ions by dissolving fluorinated electrolytes into highly fluorinated non-polar solvents. In addition to their non-flammable characteristic, our electrolytes enable high electrochemical stability in a wide voltage window of 0.0 to 5.6 V, and high ionic conductivities in a wide temperature range from −125 to + 70 °C. We show that between −95 and + 70 °C, the electrolytes enable LiNi0.8Co0.15Al0.05O2 cathodes to achieve high Coulombic efficiencies of >99.9%, and the aggressive Li anodes and the high-voltage (5.4 V) LiCoMnO4 to achieve Coulombic efficiencies of >99.4% and 99%, respectively. Even at −85 °C, the LiNi0.8Co0.15Al0.05O2 || Li battery can still deliver ~50% of its room-temperature capacity.

Suggested Citation

  • Xiulin Fan & Xiao Ji & Long Chen & Ji Chen & Tao Deng & Fudong Han & Jie Yue & Nan Piao & Ruixing Wang & Xiuquan Zhou & Xuezhang Xiao & Lixin Chen & Chunsheng Wang, 2019. "All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents," Nature Energy, Nature, vol. 4(10), pages 882-890, October.
  • Handle: RePEc:nat:natene:v:4:y:2019:i:10:d:10.1038_s41560-019-0474-3
    DOI: 10.1038/s41560-019-0474-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-019-0474-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-019-0474-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Xingyi & Li, Guangzhe & Zhang, Ruihan & Esan, Oladapo Christopher & Huo, Xiaoyu & Wu, Qixing & An, Liang, 2024. "Operation of rechargeable metal-ion batteries in low-temperature environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Yanfei Zhu & Zhoujie Lao & Mengtian Zhang & Tingzheng Hou & Xiao Xiao & Zhihong Piao & Gongxun Lu & Zhiyuan Han & Runhua Gao & Lu Nie & Xinru Wu & Yanze Song & Chaoyuan Ji & Jian Wang & Guangmin Zhou, 2024. "A locally solvent-tethered polymer electrolyte for long-life lithium metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Shang Zhu & Bharath Ramsundar & Emil Annevelink & Hongyi Lin & Adarsh Dave & Pin-Wen Guan & Kevin Gering & Venkatasubramanian Viswanathan, 2024. "Differentiable modeling and optimization of non-aqueous Li-based battery electrolyte solutions using geometric deep learning," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:4:y:2019:i:10:d:10.1038_s41560-019-0474-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.