IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6520-d908637.html
   My bibliography  Save this article

Lignin Modifications, Applications, and Possible Market Prices

Author

Listed:
  • Richard Nadányi

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Aleš Ház

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Anton Lisý

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Michal Jablonský

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Igor Šurina

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Veronika Majová

    (Department of Wood, Pulp and Paper, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

  • Andrej Baco

    (Department of Plastics, Rubber and Fibres, Institute of Natural and Synthetic Polymers, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia)

Abstract

Lignin is the second most abundant biopolymer in the world. Due to its complex structure, lignin can be considered a valuable source of energy and different chemicals. In addition, using different reactive sites on lignin, it is possible to prepare different value-added products, such as resins, polyurethanes, and many more. Different functional groups are presented on the lignin macromolecule and can be modified via different pathways. Hydroxyl groups are the most promising reactive sites for lignin modifications. Both modified and unmodified lignins could be used for preparing different biomaterials. This paper shows several possible applications of lignin. The main goal of this publication is to show the possible valorization of lignin in different value-added products throughout the actual market prices of non-biobased materials. This review proves that lignin has unquestionable advantages in material technology and can replace different substances which will lead to a higher potential market value of lignins and could create new bio-based materials compared with the actual prices of commercially available materials. Nowadays, it is easier to use lignin as an energy source even though a lot of lignin modifications and conversion processes are still under development and need more time to become more relevant for industrial applications. Information in the presented paper should reveal to the reader the importance and economic benefits of using lignin as a value-added compound in different applications.

Suggested Citation

  • Richard Nadányi & Aleš Ház & Anton Lisý & Michal Jablonský & Igor Šurina & Veronika Majová & Andrej Baco, 2022. "Lignin Modifications, Applications, and Possible Market Prices," Energies, MDPI, vol. 15(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6520-:d:908637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6520/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Xiaolan & Gao, Pei & Shen, Boxiong & Wang, Xiaoqi & Yue, Tian & Han, Zhibin, 2023. "Recent advances in lignin-derived mesoporous carbon based-on template methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6520-:d:908637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.