IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v130y2017icp500-514.html
   My bibliography  Save this article

Modeling and analysis of an integrated solid state elastocaloric heat pumping system

Author

Listed:
  • Luo, Dong
  • Feng, Yinshan
  • Verma, Parmesh

Abstract

Elastocaloric cooling (ECC) is considered as one of the candidates to replace vapor compression cycles, which use refrigerants with global warming potential (GWP) as working fluids. In order to properly understand the ECC system performance, it is critical to conduct analysis at the integrated system level. Also, due to the cyclic operation of an ECC system, dynamic modeling becomes necessary to capture the associated transients. In this study, for air conditioning applications, a unique air-to-air ECC dynamic system model has been developed to simultaneously simulate the elastocaloric effect of NiTi, heat transfer, and water transport in the system. Key parameters have been identified from sensitivity analysis of various options as well as the dynamic coupling among components. A systematic methodology has been further developed to identify practical solutions of the integrated ECC system, which provides a basis for comparison against other existing cooling technologies. Performance of an integrated ECC system with 1.2 kW net cooling capacity has been optimized using the NSGA-II method for maximum coefficient of performance (COP) within operational constraints. It has been demonstrated that effective system design and energy-efficient operation can only be achieved from optimization of the entire integrated system instead of a component or subsystem.

Suggested Citation

  • Luo, Dong & Feng, Yinshan & Verma, Parmesh, 2017. "Modeling and analysis of an integrated solid state elastocaloric heat pumping system," Energy, Elsevier, vol. 130(C), pages 500-514.
  • Handle: RePEc:eee:energy:v:130:y:2017:i:c:p:500-514
    DOI: 10.1016/j.energy.2017.05.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.05.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Suxin & Yu, Jianlin & Yan, Gang, 2017. "A review of regenerative heat exchange methods for various cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 535-550.
    2. Jaka Tušek & Kurt Engelbrecht & Dan Eriksen & Stefano Dall’Olio & Janez Tušek & Nini Pryds, 2016. "A regenerative elastocaloric heat pump," Nature Energy, Nature, vol. 1(10), pages 1-6, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tan, Jianming & Wang, Yao & Xu, Shijie & Liu, Huaican & Qian, Suxin, 2020. "Thermodynamic cycle analysis of heat driven elastocaloric cooling system," Energy, Elsevier, vol. 197(C).
    2. Jongchansitto, P. & Yachai, T. & Preechawuttipong, I. & Boufayed, R. & Balandraud, X., 2021. "Concept of mechanocaloric granular material made from shape memory alloy," Energy, Elsevier, vol. 219(C).
    3. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2018. "Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator," Energy, Elsevier, vol. 165(PA), pages 439-455.
    4. Žiga Ahčin & Parham Kabirifar & Luka Porenta & Miha Brojan & Jaka Tušek, 2022. "Numerical Modeling of Shell-and-Tube-like Elastocaloric Regenerator," Energies, MDPI, vol. 15(23), pages 1-28, December.
    5. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    6. Chdil, O. & Bikerouin, M. & Balli, M. & Mounkachi, O., 2023. "New horizons in magnetic refrigeration using artificial intelligence," Applied Energy, Elsevier, vol. 335(C).
    7. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2020. "The use of barocaloric effect for energy saving in a domestic refrigerator with ethylene-glycol based nanofluids: A numerical analysis and a comparison with a vapor compression cooler," Energy, Elsevier, vol. 190(C).
    8. Qian, Suxin & Yuan, Lifen & Yu, Jianlin & Yan, Gang, 2017. "Numerical modeling of an active elastocaloric regenerator refrigerator with phase transformation kinetics and the matching principle for materials selection," Energy, Elsevier, vol. 141(C), pages 744-756.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Jianming & Wang, Yao & Xu, Shijie & Liu, Huaican & Qian, Suxin, 2020. "Thermodynamic cycle analysis of heat driven elastocaloric cooling system," Energy, Elsevier, vol. 197(C).
    2. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    3. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    4. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    5. Kristina Navickaitė & Michael Penzel & Christian Bahl & Kurt Engelbrecht & Jaka Tušek & André Martin & Mike Zinecker & Andreas Schubert, 2020. "CFD-Simulation Assisted Design of Elastocaloric Regenerator Geometry," Sustainability, MDPI, vol. 12(21), pages 1-16, October.
    6. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    7. Johra, Hicham & Filonenko, Konstantin & Heiselberg, Per & Veje, Christian & Dall’Olio, Stefano & Engelbrecht, Kurt & Bahl, Christian, 2019. "Integration of a magnetocaloric heat pump in an energy flexible residential building," Renewable Energy, Elsevier, vol. 136(C), pages 115-126.
    8. Zhu, Yuxiang & Zhou, Guoan & Cheng, Siyuan & Sun, Qingping & Yao, Shuhuai, 2023. "A numerical study of elastocaloric regenerators of tubular structures," Applied Energy, Elsevier, vol. 339(C).
    9. Zhang, Jiongjiong & Zhu, Yuxiang & Cheng, Siyuan & Yao, Shuhuai & Sun, Qingping, 2023. "Effect of inactive section on cooling performance of compressive elastocaloric refrigeration prototype," Applied Energy, Elsevier, vol. 351(C).
    10. Qiu, Ziyang & Du, Tao & Yue, Qiang & Na, Hongming & Sun, Jingchao & Yuan, Yuxing & Che, Zichang & Wang, Yisong & Li, Yingnan, 2023. "A multi-parameters evaluation on exergy for hydrogen metallurgy," Energy, Elsevier, vol. 281(C).
    11. Wang, Shuyao & Shi, Yongjun & Li, Ying & Lin, Hai & Fan, Kaijun & Teng, Xiangjie, 2023. "Solid-state refrigeration of shape memory alloy-based elastocaloric materials: A review focusing on preparation methods, properties and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    12. Han, Yuan & Zhang, Houcheng, 2022. "Potentiality of elastocaloric cooling system for high-temperature proton exchange membrane fuel cell waste heat harvesting," Renewable Energy, Elsevier, vol. 200(C), pages 1166-1179.
    13. Syrodoy, S.V. & Kuznetsov, G.V. & Gutareva, N. Yu & Nigay (Ivanova), N.A., 2022. "Mathematical modeling of the thermochemical processes of sequestration of SOx when burning the particles of the coal and wood mixture," Renewable Energy, Elsevier, vol. 185(C), pages 1392-1409.
    14. Yu, Binbin & Long, Junan & Zhang, Yingjing & Ouyang, Hongsheng & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2024. "Life cycle climate performance evaluation (LCCP) of electric vehicle heat pumps using low-GWP refrigerants towards China's carbon neutrality," Applied Energy, Elsevier, vol. 353(PA).
    15. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2018. "Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator," Energy, Elsevier, vol. 165(PA), pages 439-455.
    16. Klinar, K. & Kitanovski, A., 2020. "Thermal control elements for caloric energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    17. Tran, Ngoctan & Wang, Chi-Chuan, 2019. "Effects of tube shapes on the performance of recuperative and regenerative heat exchangers," Energy, Elsevier, vol. 169(C), pages 1-17.
    18. Jongchansitto, P. & Yachai, T. & Preechawuttipong, I. & Boufayed, R. & Balandraud, X., 2021. "Concept of mechanocaloric granular material made from shape memory alloy," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:130:y:2017:i:c:p:500-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.