IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v187y2023ics1364032123005981.html
   My bibliography  Save this article

Exergy, exergoeconomic and exergoenvironmental assessments of experimental hybrid energy systems for hot water production to improve energy sustainability

Author

Listed:
  • Daghsen, K.
  • Picallo Perez, A.
  • Lounissi, D.
  • Bouaziz, N.

Abstract

Hybrid energy systems have proven their efficacy in improving energy sustainability. This paper focuses on the design and evaluation of various hybrid energy systems for hot water production in the experimental plant of the Laboratory for Quality Control in Buildings. The experimental facility was created to test and control various systems for energy supplies in buildings. In this work, three thermal installations were investigated: (1) a combined boiler cogeneration system, (2) a combined boiler solar collector system, and (3) a combined boiler heat pump system. After configuring each system in the laboratory, defining the control, and running the experimental essay, the corresponding data were obtained and treated. The exergy concept matches very well with the goal of promoting new systems that efficiently integrate renewable and nonrenewable energy resources. The exergy analysis and its extended assessments, the exergoeconomic and the exergoenvironmental, were applied to the designed systems. The results show that DHW production by the combined boiler solar thermal collector system is the most expensive in terms of the exergy cost index (about 33.29 kWhex/kWhex). DHW production by the combined boiler cogeneration system offers the lowest exergy unit cost (about 21.15 kWhex/kWhex). Based on economic and environmental indexes, DHW production by the combined boiler solar thermal collector system is the most suitable option. Its unit exergoeconomic cost is around 2.15 €/kWhex, and its exergoenvironmental unit impact is equal to 9.35 kg CO2/kWhex.

Suggested Citation

  • Daghsen, K. & Picallo Perez, A. & Lounissi, D. & Bouaziz, N., 2023. "Exergy, exergoeconomic and exergoenvironmental assessments of experimental hybrid energy systems for hot water production to improve energy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005981
    DOI: 10.1016/j.rser.2023.113741
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113741?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Mahmoudan, Alireza & Samadof, Parviz & Hosseinzadeh, Siamak & Garcia, Davide Astiaso, 2021. "A multigeneration cascade system using ground-source energy with cold recovery: 3E analyses and multi-objective optimization," Energy, Elsevier, vol. 233(C).
    3. Zhou, Xiao & Cai, Yangchao & Li, Xuetao, 2024. "Process arrangement and multi-aspect study of a novel environmentally-friendly multigeneration plant relying on a geothermal-based plant combined with the goswami cycle booted by kalina and desalinati," Energy, Elsevier, vol. 299(C).
    4. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    5. Vaccari, Marco & Pannocchia, Gabriele & Tognotti, Leonardo & Paci, Marco & Bonciani, Roberto, 2020. "A rigorous simulation model of geothermal power plants for emission control," Applied Energy, Elsevier, vol. 263(C).
    6. Hashemian, Nasim & Noorpoor, Alireza, 2022. "A geothermal-biomass powered multi-generation plant with freshwater and hydrogen generation options: Thermo-economic-environmental appraisals and multi-criteria optimization," Renewable Energy, Elsevier, vol. 198(C), pages 254-266.
    7. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    8. Behzadi, Amirmohammad & Gholamian, Ehsan & Houshfar, Ehsan & Habibollahzade, Ali, 2018. "Multi-objective optimization and exergoeconomic analysis of waste heat recovery from Tehran's waste-to-energy plant integrated with an ORC unit," Energy, Elsevier, vol. 160(C), pages 1055-1068.
    9. Hsieh, Jui-Ching & Li, Bo-Han & Lee, Bo-Heng & Royandi, Muhamad Aditya & Salsabilla, Nadya Sefira, 2024. "Performance and economic analyses of a geothermal reservoir model coupled with a flash–binary cycle model," Renewable Energy, Elsevier, vol. 230(C).
    10. Li, Tailu & Zhang, Yao & Li, Xuelong & Yuan, Ye, 2024. "Techno-economic comparison of organic fluid between single- and dual-flash for geothermal power generation enhancement," Renewable Energy, Elsevier, vol. 231(C).
    11. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari, 2017. "Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants," Energy, Elsevier, vol. 140(P1), pages 1096-1106.
    12. Xu Ping & Baofeng Yao & Hongguang Zhang & Hongzhi Zhang & Jia Liang & Meng Yuan & Kai Niu & Yan Wang, 2022. "Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment," Energies, MDPI, vol. 15(21), pages 1-28, October.
    13. Alirahmi, Seyed Mojtaba & Behzadi, Amirmohammad & Ahmadi, Pouria & Sadrizadeh, Sasan, 2023. "An innovative four-objective dragonfly-inspired optimization algorithm for an efficient, green, and cost-effective waste heat recovery from SOFC," Energy, Elsevier, vol. 263(PA).
    14. Tailu Li & Jingyi Wang & Yao Zhang & Ruizhao Gao & Xiang Gao, 2023. "Thermodynamic Performance Comparison of CCHP System Based on Organic Rankine Cycle and Two-Stage Vapor Compression Cycle," Energies, MDPI, vol. 16(3), pages 1-20, February.
    15. Jia, Qiaoran & Zhu, Zehua & Zhang, Tao & Liu, Xiwen & Li, Ding & Wang, Maotao & Wang, Min, 2024. "A novel cascade heat design for a geothermal energy-based combined power plant in integration with water electrolysis and ammonia synthesis processes: Comprehensive thermo-environ-economic analyses," Energy, Elsevier, vol. 311(C).
    16. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    17. Shamoushaki, Moein & Fiaschi, Daniele & Manfrida, Giampaolo & Talluri, Lorenzo, 2022. "Energy, exergy, economic and environmental (4E) analyses of a geothermal power plant with NCGs reinjection," Energy, Elsevier, vol. 244(PA).
    18. Tan, Hua & Bo, Likang & Nutakki, Tirumala Uday Kumar & Agrawal, Manoj Kumar & Seikh, Asiful H. & Tahir Chauhdary, Sohaib & Shah, Nehad Ali & Ji, Tiancheng, 2024. "A comprehensive multi-variable approach for evaluating the feasibility of integration a novel heat recovery model into a gas turbine power plant, producing electricity, heat, and methanol," Energy, Elsevier, vol. 296(C).
    19. Nemati, Arash & Nami, Hossein & Yari, Mortaza, 2018. "Assessment of different configurations of solar energy driven organic flash cycles (OFCs) via exergy and exergoeconomic methodologies," Renewable Energy, Elsevier, vol. 115(C), pages 1231-1248.
    20. Zhuang, Yu & Zhou, Congcong & Dong, Yachao & Du, Jian & Shen, Shengqiang, 2021. "A hierarchical optimization and design of double Kalina Cycles for waste heat recovery," Energy, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.