IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v187y2023ics1364032123005592.html
   My bibliography  Save this article

Design of stage-separated anaerobic digestion: Principles, applications, and prospects

Author

Listed:
  • Tang, Shuai
  • Wang, Zixin
  • Lu, Haifeng
  • Si, Buchun
  • Wang, Chaoyuan
  • Jiang, Weizhong

Abstract

Anaerobic digestion (AD) is a predominant technology for treating biowaste and producing clean energy in the field of renewable and sustainable development. Conventional single stage AD is limited by its low energy recovery efficiency, unstable operational performances, and vulnerability to operational conditions. Stage-separated AD was proposed as a promising strategy and increased biomethane production by 5.8%–65.5% and energy recovery by 9.8%–65.5%, respectively. However, the limited information and understanding of stage separation posed technical challenges in the design and applications of stage-separated AD. Thermodynamic and kinetic analysis in the present study suggests that the principles of stage-separated AD are the separation of biochemical reactions and functional microbes. On this basis, inoculum preselection, pH gradient, organic loading regulation, and temperature control were adopted to accelerate the stage separation. Stage-separated AD systems could adopt physically separated or integrated reactor designs. Integrated systems exhibited advantages in operational simplicity, reduced footprint (ca. 30%), and automated stage separation, compared to physically separated AD configurations. Moreover, the pilot and full-scale stage-separated AD setups have emerged, bridging the transition from research to commercial implementation. However, addressing the complexity of feedstock and practical application scenarios remains a big challenge. This study proposed a strategy that takes full account of feedstock characteristics, reactor/compartment configurations, and operational modes for the design of stage-separated AD systems. The comprehensive review in this study identifies promising directions for the design and operation of stage-separated AD, and helps to further unlock its potential for efficient renewable energy (biomethane and biohydrogen) production and biowaste valorization.

Suggested Citation

  • Tang, Shuai & Wang, Zixin & Lu, Haifeng & Si, Buchun & Wang, Chaoyuan & Jiang, Weizhong, 2023. "Design of stage-separated anaerobic digestion: Principles, applications, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005592
    DOI: 10.1016/j.rser.2023.113702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005592
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gottardo, Marco & Micolucci, Federico & Bolzonella, David & Uellendahl, Hinrich & Pavan, Paolo, 2017. "Pilot scale fermentation coupled with anaerobic digestion of food waste - Effect of dynamic digestate recirculation," Renewable Energy, Elsevier, vol. 114(PB), pages 455-463.
    2. Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Voelklein, M.A. & O' Shea, R. & Jacob, A. & Murphy, J.D., 2017. "Role of trace elements in single and two-stage digestion of food waste at high organic loading rates," Energy, Elsevier, vol. 121(C), pages 185-192.
    4. Schievano, A. & Tenca, A. & Lonati, S. & Manzini, E. & Adani, F., 2014. "Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass?," Applied Energy, Elsevier, vol. 124(C), pages 335-342.
    5. Rajendran, Karthik & Mahapatra, Durgamadhab & Venkatraman, Arun Venkatesh & Muthuswamy, Shanmugaprakash & Pugazhendhi, Arivalagan, 2020. "Advancing anaerobic digestion through two-stage processes: Current developments and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    6. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Purwanta, & Bayu, Ardian Indra & Mellyanawaty, Melly & Budiman, Arief & Budhijanto, Wiratni, 2022. "Techno-economic analysis of reactor types and biogas utilization schemes in thermophilic anaerobic digestion of sugarcane vinasse," Renewable Energy, Elsevier, vol. 201(P1), pages 864-875.
    9. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Chatterjee, Biswabandhu & Mazumder, Debabrata, 2019. "Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 439-469.
    3. Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    6. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    7. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Herrera Adarme, Oscar Fernando & Baêta, Bruno Eduardo Lobo & Alves Gurgel, Leandro Vinícius & de Ávila Rodrigues, Fabio & Aquino, Sérgio Francisco de, 2022. "Is anaerobic co-digestion the missing link to integrate sugarcane biorefinery?," Renewable Energy, Elsevier, vol. 195(C), pages 488-496.
    9. Algapani, Dalal E. & Qiao, Wei & Ricci, Marina & Bianchi, Davide & M. Wandera, Simon & Adani, Fabrizio & Dong, Renjie, 2019. "Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation," Renewable Energy, Elsevier, vol. 130(C), pages 1108-1115.
    10. Lin, Chiu-Yue & Nguyen, Thi Mai-Linh & Chu, Chen-Yeon & Leu, Hoang-Jyh & Lay, Chyi-How, 2018. "Fermentative biohydrogen production and its byproducts: A mini review of current technology developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4215-4220.
    11. Trchounian, Karen & Poladyan, Anna & Trchounian, Armen, 2016. "Optimizing strategy for Escherichia coli growth and hydrogen production during glycerol fermentation in batch culture: Effects of some heavy metal ions and their mixtures," Applied Energy, Elsevier, vol. 177(C), pages 335-340.
    12. Li, Xinxin & Tong, Jingjing & Yuan, Maomao & Song, Mei & Gao, Jingsi & Zhu, Jia & Liu, Yanping, 2023. "Demonstrating the application of batch anaerobic digestion recirculating slurry inoculation of food waste engineering from a microbiological perspective," Renewable Energy, Elsevier, vol. 217(C).
    13. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    14. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    15. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    17. Dimitra Theodosi Palimeri & Konstantina Papadopoulou & Apostolos G. Vlyssides & Anestis A. Vlysidis, 2023. "Improving the Biogas Production and Methane Yield in a UASB Reactor with the Addition of Sulfate," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    18. Graciela M. L. Ruiz-Aguilar & Hector G. Nuñez-Palenius & Nanh Lovanh & Sarai Camarena-Martínez, 2022. "Comparative Study of Methane Production in a One-Stage vs. Two-Stage Anaerobic Digestion Process from Raw Tomato Plant Waste," Energies, MDPI, vol. 15(23), pages 1-12, December.
    19. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    20. Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123005592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.