IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v126y2017icp326-334.html
   My bibliography  Save this article

Potential for valorization of dehydrated paper pulp sludge for biogas production: Addition of selected hydrolytic enzymes in semi-continuous anaerobic digestion assays

Author

Listed:
  • Kolbl, Sabina
  • Forte-Tavčer, Petra
  • Stres, Blaž

Abstract

The effects of five commercially available hydrolytic enzyme additives on methane yields from dehydrated paper pulp sludge (DPPS) were determined in 5L pilot-scale reactors operated in semi-continuous mode for 60 days. Methane production was 40% and 43% higher in reactors receiving Novozymes and Novalin additives, respectively, compared to controls. Effects of time of DPPS inclusion on bacterial and archaeal microbial communities were many times larger than effects of enzyme type as enzyme addition did not produce rearrangements larger than random fluctuations observed in reactors receiving only DPPS. The ratio between volatile organic acids and alkalinity signified progressive decrease in process stability until day 45 irrespective of enzyme supplementation. Complementation with clarified pig slurry (1.5% vol.) for subsequent 15 days effectively stabilized process parameters and was sufficient for microbial communities to maintain DPPS hydrolytic capacity and process additional carbon flow derived from hydrolytic activity of enzyme additives. Consequently, initially unadapted full-scale biogas plant inoculum was capable of significantly increased methane yields from DPPS. Based on annual DPPS availability in EU the potential for additional energy recovery was estimated to be in the range of nearly 1 TJ.

Suggested Citation

  • Kolbl, Sabina & Forte-Tavčer, Petra & Stres, Blaž, 2017. "Potential for valorization of dehydrated paper pulp sludge for biogas production: Addition of selected hydrolytic enzymes in semi-continuous anaerobic digestion assays," Energy, Elsevier, vol. 126(C), pages 326-334.
  • Handle: RePEc:eee:energy:v:126:y:2017:i:c:p:326-334
    DOI: 10.1016/j.energy.2017.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217304127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romero-Güiza, M.S. & Vila, J. & Mata-Alvarez, J. & Chimenos, J.M. & Astals, S., 2016. "The role of additives on anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1486-1499.
    2. Voelklein, M.A. & O' Shea, R. & Jacob, A. & Murphy, J.D., 2017. "Role of trace elements in single and two-stage digestion of food waste at high organic loading rates," Energy, Elsevier, vol. 121(C), pages 185-192.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomas Astrauskas & Tomas Januševičius & Raimondas Grubliauskas, 2021. "Acoustic Panels Made of Paper Sludge and Clay Composites," Sustainability, MDPI, vol. 13(2), pages 1-10, January.
    2. Li, Wanwu & Khalid, Habiba & Amin, Farrukh Raza & Zhang, Han & Dai, Zhuangqiang & Chen, Chang & Liu, Guangqing, 2020. "Biomethane production characteristics, kinetic analysis, and energy potential of different paper wastes in anaerobic digestion," Renewable Energy, Elsevier, vol. 157(C), pages 1081-1088.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahsa Alimohammadi & Goksel N. Demirer, 2022. "Upgrading Anaerobic Sludge Digestion by Using an Oil Refinery By-Product," Sustainability, MDPI, vol. 14(23), pages 1-11, November.
    2. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    4. Capson-Tojo, G. & Moscoviz, R. & Astals, S. & Robles, Á. & Steyer, J.-P., 2020. "Unraveling the literature chaos around free ammonia inhibition in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    5. Tang, Shuai & Wang, Zixin & Lu, Haifeng & Si, Buchun & Wang, Chaoyuan & Jiang, Weizhong, 2023. "Design of stage-separated anaerobic digestion: Principles, applications, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Apostolos Spyridonidis & Ioanna A. Vasiliadou & Katerina Stamatelatou, 2022. "Effect of Zeolite on the Methane Production from Chicken Manure Leachate," Sustainability, MDPI, vol. 14(4), pages 1-14, February.
    7. Abbas, Yasir & Yun, Sining & Wang, Ziqi & Zhang, Yongwei & Zhang, Xianmei & Wang, Kaijun, 2021. "Recent advances in bio-based carbon materials for anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    9. Zhu, Xianpu & Zhang, Yujia & Yellezuome, Dominic & Wang, Zengzhen & Liu, Xuwei & Liu, Ronghou, 2024. "The effects of co-supplemented Fe, Co and Ni on Fe bioavailability and microbial community structure in mesophilic food waste anaerobic digestion by using response surface methodology," Renewable Energy, Elsevier, vol. 229(C).
    10. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun, 2019. "Life-cycle assessment of biohythane production via two-stage anaerobic fermentation from microalgae and food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 395-410.
    11. A. Sinan Akturk & Goksel N. Demirer, 2020. "Improved Food Waste Stabilization and Valorization by Anaerobic Digestion Through Supplementation of Conductive Materials and Trace Elements," Sustainability, MDPI, vol. 12(12), pages 1-11, June.
    12. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    13. Chaves, Gustavo T. & Teles, Felipe & Balbo, Antonio R. & dos Reis, Célia A. & Florentino, Helenice de Oliveira, 2024. "Mathematical modelling of biodigestion in an Indian biodigester and its stability analysis via Lyapunov technique," Renewable Energy, Elsevier, vol. 226(C).
    14. Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
    15. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    16. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    17. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    18. Freitas, F.F. & Furtado, A.C. & Piñas, J.A.V. & Venturini, O.J. & Barros, R.M. & Lora, E.E.S., 2022. "Holistic Life Cycle Assessment of a biogas-based electricity generation plant in a pig farm considering co-digestion and an additive," Energy, Elsevier, vol. 261(PB).
    19. Mosleh Uddin, Md & Wen, Zhiyou & Mba Wright, Mark, 2022. "Techno-economic and environmental impact assessment of using corn stover biochar for manure derived renewable natural gas production," Applied Energy, Elsevier, vol. 321(C).
    20. Oluwafunmilayo Abiola Aworanti & Oluseye Omotoso Agbede & Samuel Enahoro Agarry & Ayobami Olu Ajani & Oyetola Ogunkunle & Opeyeolu Timothy Laseinde & S. M. Ashrafur Rahman & Islam Md Rizwanul Fattah, 2023. "Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables," Energies, MDPI, vol. 16(8), pages 1-36, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:126:y:2017:i:c:p:326-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.