IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipas0960148124016574.html
   My bibliography  Save this article

Fixing collapsed dry anaerobic digestion system of kitchen waste caused by severe VFAs accumulation

Author

Listed:
  • Wang, Jiongke
  • Tang, Xiaoyu
  • Yang, Hongnan
  • Zhao, Qi
  • Wang, Heng
  • Deng, Liangwei
  • Wang, Wenguo

Abstract

Severe inhibition by volatile fatty acids (VFAs) frequently occurs during the dry anaerobic digestion of kitchen waste at high organic load rate (OLR), leading to decreased biogas production and even the collapse of the anaerobic digestion system. In this study, VFAs accumulation was significantly reduced by adding powder-activated carbon (PAC) or alkaline additives (AA), thus restoring the collapsed system to a stable operating state. With the addition of PAC or AA, the maximal OLR reached 11.14 g VS/(L·d), which was 30 % higher than observed without any additives (control group), while the VFAs concentration was maintained below 3000 mg/L. At this OLR, the volumetric biogas production rate stabilized at 5.1 L/(L·d) in the presence of PAC and AA, while that of the control group gradually decreased to zero. The VFAs concentration with PAC addition was 86 % lower than that of the control group, possibly because PAC might stimulate the formation of direct interspecies electron transfer between syntrophic bacteria and methanogens (Methanosarcina), thereby promoting VFAs degradation. The addition of AA, which resulted in a 95 % decrease in ammonia-nitrogen concentration, can provide a good growth environment for the microorganisms involved in acidogenesis and hydrogenotrophic methanogenesis.

Suggested Citation

  • Wang, Jiongke & Tang, Xiaoyu & Yang, Hongnan & Zhao, Qi & Wang, Heng & Deng, Liangwei & Wang, Wenguo, 2024. "Fixing collapsed dry anaerobic digestion system of kitchen waste caused by severe VFAs accumulation," Renewable Energy, Elsevier, vol. 237(PA).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016574
    DOI: 10.1016/j.renene.2024.121589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Lei & Liu, Haoyu & Chen, Yongdong & Yang, Donghai & Cai, Chen & Yuan, Shijie & Dai, Xiaohu, 2022. "Effect of Magnet-Fe3O4 composite structure on methane production during anaerobic sludge digestion: Establishment of direct interspecies electron transfer," Renewable Energy, Elsevier, vol. 188(C), pages 52-60.
    2. Beugre, Etienne Yves-Martial & Gnagne, Théophile, 2022. "Vane geometry for measurement of influent rheological behaviour in dry anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Wang, Zixin & Wang, Tengfei & Si, Buchun & Watson, Jamison & Zhang, Yuanhui, 2021. "Accelerating anaerobic digestion for methane production: Potential role of direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning, Jing & Kamali, Mohammadreza & Appels, Lise, 2024. "Advances in carbonaceous promoters for anaerobic digestion processes – Functions and mechanisms of action," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Tsui, To-Hung & Zhang, Le & Zhang, Jingxin & Dai, Yanjun & Tong, Yen Wah, 2022. "Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Tang, Shuai & Wang, Zixin & Lu, Haifeng & Si, Buchun & Wang, Chaoyuan & Jiang, Weizhong, 2023. "Design of stage-separated anaerobic digestion: Principles, applications, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    4. Yuhan Zhang & Yongbin Wang & Zhibin Chen & Chengzhi Hu & Jiuhui Qu, 2024. "Recovering nutrients and unblocking the cake layer of an electrochemical anaerobic membrane bioreactor," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    6. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
    8. Rubén Agregán & José M. Lorenzo & Manoj Kumar & Mohammad Ali Shariati & Muhammad Usman Khan & Abid Sarwar & Muhammad Sultan & Maksim Rebezov & Muhammad Usman, 2022. "Anaerobic Digestion of Lignocellulose Components: Challenges and Novel Approaches," Energies, MDPI, vol. 15(22), pages 1-24, November.
    9. Li, Lei & Xu, Ying & Dai, Xiaohu & Dai, Lingling, 2021. "Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Zhou, Yixuan & Su, Xianbo & Zhao, Weizhong & Wang, Lufei & Fu, Haijiao, 2023. "Enhanced coal biomethanation by microbial electrolysis and graphene in the anaerobic digestion," Renewable Energy, Elsevier, vol. 219(P2).
    11. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    12. Tae-Bong Kim & Jun-Hyeong Lee & Young-Man Yoon, 2024. "Residence Time Reduction in Anaerobic Reactors: Investigating the Economic Benefits of Magnetite-Induced Direct Interspecies Electron Transfer Mechanism," Energies, MDPI, vol. 17(2), pages 1-13, January.
    13. Li, Ai-Hua & Zhang, Bao-Cai & Li, Wen-Tao & Tang, Cong-Cong & Zhou, Ai-Juan & Ren, Yong-Xiang & Li, Zhihua & Liu, Wenzong & He, Zhang-Wei, 2024. "Quorum-sensing molecules regulate biochar-assisted anaerobic digestion system for methane production: Single-stage vs. two-stage digestion," Renewable Energy, Elsevier, vol. 235(C).
    14. Dimitra Theodosi Palimeri & Konstantina Papadopoulou & Apostolos G. Vlyssides & Anestis A. Vlysidis, 2023. "Improving the Biogas Production and Methane Yield in a UASB Reactor with the Addition of Sulfate," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    15. Li, Lei & Liu, Haoyu & Chen, Yongdong & Yang, Donghai & Cai, Chen & Yuan, Shijie & Dai, Xiaohu, 2022. "Effect of Magnet-Fe3O4 composite structure on methane production during anaerobic sludge digestion: Establishment of direct interspecies electron transfer," Renewable Energy, Elsevier, vol. 188(C), pages 52-60.
    16. Agnieszka A. Pilarska & Krzysztof Pilarski & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Alicja Niewiadomska & Jacek Dach, 2024. "Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source—A Review," Energies, MDPI, vol. 17(17), pages 1-26, September.
    17. Pengjiao Tian & Binbin Gong & Kaijian Bi & Yuxin Liu & Jing Ma & Xiqing Wang & Zhangsun Ouyang & Xian Cui, 2023. "Anaerobic Co-Digestion of Pig Manure and Rice Straw: Optimization of Process Parameters for Enhancing Biogas Production and System Stability," IJERPH, MDPI, vol. 20(1), pages 1-14, January.
    18. Ding, Lingkan & Wang, Yuchuan & Lin, Hongjian & van Lierop, Leif & Hu, Bo, 2022. "Facilitating solid-state anaerobic digestion of food waste via bio-electrochemical treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Jin, Hong-Yu & Yao, Xing-Ye & Tang, Cong-Cong & Zhou, Ai-Juan & Liu, Wenzong & Ren, Yong-Xiang & Li, Zhihua & Wang, Aijie & He, Zhang-Wei, 2024. "Magnetite modified zeolite as an alternative additive to promote methane production from anaerobic digestion of waste activated sludge," Renewable Energy, Elsevier, vol. 224(C).
    20. Wei, Yufang & Zhao, Hongbing & Qi, Xuejiao & Yang, Tianxue & Zhang, Junping & Chen, Wangmi & Li, Mingxiao & Xi, Beidou, 2023. "Direct interspecies electron transfer stimulated by coupling of modified anaerobic granular sludge with microbial electrolysis cell for biogas production enhancement," Applied Energy, Elsevier, vol. 341(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pa:s0960148124016574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.