IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp1486-1499.html
   My bibliography  Save this article

The role of additives on anaerobic digestion: A review

Author

Listed:
  • Romero-Güiza, M.S.
  • Vila, J.
  • Mata-Alvarez, J.
  • Chimenos, J.M.
  • Astals, S.

Abstract

Anaerobic digestion is a worldwide technology for the treatment of organic waste streams with clear environmental benefits including generation of methane as renewable energy. However, the need to improve process feasibility of existing applications as well as to expand anaerobic digestion to a range of new substrates has raised interest on several intensifications techniques. Among them, the supplementation of inorganic and biological additives has shown good results at improving digesters performance. This manuscript presents a comprehensive review about recent advances in the utilization of inorganic and biological additives. On the one hand, reviewed inorganic additives comprise: (i) macro- (e.g. P, N and S) and micro- (e.g. Fe, Ni, Mo, Co, W and Se) nutrients supplements, (ii) ashes from waste incineration, (iii) compounds able to mitigate ammonia inhibition, and (iv) substances with high biomass immobilization capacity. Among them, iron (Fe0 and Fe(III)) has shown particularly promising results, which have been mainly related to their action as electron donor/acceptor and cofactor of key enzymatic activities. On the other hand, reviewed biological additives include: (i) the dosage of microbial inocula with high hydrolytic or methanogenic activity (bioaugmentation), and (ii) the addition of enzymes able to facilitate particulate organic matter solubilization.

Suggested Citation

  • Romero-Güiza, M.S. & Vila, J. & Mata-Alvarez, J. & Chimenos, J.M. & Astals, S., 2016. "The role of additives on anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1486-1499.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1486-1499
    DOI: 10.1016/j.rser.2015.12.094
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211501477X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.094?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    2. G. Ganesh & Obuli P. Karthikeyan & Kurian Joseph, 2010. "Enhancing the hydrolysis step in anaerobic digestion of municipal solid waste using rumen fluid," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 13(3/4), pages 311-321.
    3. Romero-Güiza, M.S. & Peces, M. & Astals, S. & Benavent, J. & Valls, J. & Mata-Alvarez, J., 2014. "Implementation of a prototypal optical sorter as core of the new pre-treatment configuration of a mechanical–biological treatment plant treating OFMSW through anaerobic digestion," Applied Energy, Elsevier, vol. 135(C), pages 63-70.
    4. Merlin Christy, P. & Gopinath, L.R. & Divya, D., 2014. "A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 167-173.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Latifi, Pooria & Karrabi, Mohsen & Danesh, Shahnaz, 2019. "Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 288-296.
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    3. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    4. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    5. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    6. Ao, Tianjie & Chen, Lin & Zhou, Pan & Liu, Xiaofeng & Li, Dong, 2021. "The role of oxidation-reduction potential as an early warning indicator, and a microbial instability mechanism in a pilot-scale anaerobic mesophilic digestion of chicken manure," Renewable Energy, Elsevier, vol. 179(C), pages 223-232.
    7. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    8. Ormaechea, P. & Castrillón, L. & Suárez-Peña, B. & Megido, L. & Fernández-Nava, Y. & Negral, L. & Marañón, E. & Rodríguez-Iglesias, J., 2018. "Enhancement of biogas production from cattle manure pretreated and/or co-digested at pilot-plant scale. Characterization by SEM," Renewable Energy, Elsevier, vol. 126(C), pages 897-904.
    9. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    10. Macintosh, C. & Astals, S. & Sembera, C. & Ertl, A. & Drewes, J.E. & Jensen, P.D. & Koch, K., 2019. "Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration," Applied Energy, Elsevier, vol. 242(C), pages 797-808.
    11. Cristiane Romio & Michael Vedel Wegener Kofoed & Henrik Bjarne Møller, 2021. "Digestate Post-Treatment Strategies for Additional Biogas Recovery: A Review," Sustainability, MDPI, vol. 13(16), pages 1-27, August.
    12. Alves, Ingrid R.F.S. & Mahler, Claudio F. & Oliveira, Luciano B. & Reis, Marcelo M. & Bassin, João P., 2022. "Investigating the effect of crude glycerol from biodiesel industry on the anaerobic co-digestion of sewage sludge and food waste in ternary mixtures," Energy, Elsevier, vol. 241(C).
    13. Andrea Zanellati & Federica Spina & Luca Rollé & Giovanna Cristina Varese & Elio Dinuccio, 2020. "Fungal Pretreatments on Non-Sterile Solid Digestate to Enhance Methane Yield and the Sustainability of Anaerobic Digestion," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    14. Lamis Yousra Shahrazed Khelifa Zouaghi & Hayet Djelal & Zineb Salem, 2021. "Anaerobic co-digestion of three organic wastes under mesophilic conditions: lab-scale and pilot-scale studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9014-9028, June.
    15. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Yuan, Haiping & Zhu, Nanwen, 2016. "Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 429-438.
    17. Cheng, F. & Brewer, C.E., 2021. "Conversion of protein-rich lignocellulosic wastes to bio-energy: Review and recommendations for hydrolysis + fermentation and anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. Solé-Bundó, Maria & Passos, Fabiana & Romero-Güiza, Maycoll S. & Ferrer, Ivet & Astals, Sergi, 2019. "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 471-482.
    19. Song, Minkyung & Duc Pham, Hong & Seon, Jiyun & Chul Woo, Hee, 2015. "Marine brown algae: A conundrum answer for sustainable biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 782-792.
    20. Yang, Liangcheng & Xu, Fuqing & Ge, Xumeng & Li, Yebo, 2015. "Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 824-834.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:1486-1499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.