IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v98y2016icp43-50.html
   My bibliography  Save this article

Improvement of wheat straw hydrolysis by cellulolytic blends of two Penicillium spp

Author

Listed:
  • Saini, Jitendra Kumar
  • Singhania, Reeta Rani
  • Satlewal, Alok
  • Saini, Reetu
  • Gupta, Ravi
  • Tuli, Deepak
  • Mathur, Anshu
  • Adsul, Mukund

Abstract

Co-culture of fungal strains Penicillium janthinellum EMS-UV-8 (E), Penicillium funiculosum strain P (P) and Aspergillus sp. strain G (G) and blending of their crude cellulase were evaluated for improvements in cellulase activities as well as for enhanced hydrolysis of dilute acid pretreated wheat straw (PWS). The blending of crude enzymes of P and E enhanced the hydrolysis of PWS more effectively due to synergism in cellulolytic enzyme activities. Here, three types of blends were made on the basis of equal FPUs, equal protein content or fixed volume containing different proportions of individual enzymes, the former blend hydrolyzed 42.6% of PWS due to the 98%,62%, 64% and 34% synergistic enhancement in endo-glucanase, cellulase (FPU), β-glucosidase and xylanase activities, respectively. Hydrolysis at 10% solid loading of PWS in roller bottle reactor with this blend further enhanced hydrolysis yield to 74% within 24 h, which was much better than the corresponding hydrolysis yields of individual (38.1% by E and 61.5% by P) or the commercial enzyme (62.3%). This study proved that synergistic blends of cellulases from two Penicillium spp. are cost-effective tools for efficient wheat straw hydrolysis for on-site biofuel production.

Suggested Citation

  • Saini, Jitendra Kumar & Singhania, Reeta Rani & Satlewal, Alok & Saini, Reetu & Gupta, Ravi & Tuli, Deepak & Mathur, Anshu & Adsul, Mukund, 2016. "Improvement of wheat straw hydrolysis by cellulolytic blends of two Penicillium spp," Renewable Energy, Elsevier, vol. 98(C), pages 43-50.
  • Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:43-50
    DOI: 10.1016/j.renene.2016.01.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116300258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.01.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saini, Jitendra Kumar & Patel, Anil Kumar & Adsul, Mukund & Singhania, Reeta Rani, 2016. "Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 29-42.
    2. H K, Narendra Kumar & N, Chandra Mohana & H C, Amrutha & D, Rakshith & B P, Harini & Satish, S., 2023. "Biomass conversion through optimization of cellulase from Chryseobacterium junjuense Bp17 and their utility in bioethanol production," Energy, Elsevier, vol. 283(C).
    3. Singhania, Reeta Rani & Ruiz, Héctor A. & Awasthi, Mukesh Kumar & Dong, Cheng-Di & Chen, Chiu-Wen & Patel, Anil Kumar, 2021. "Challenges in cellulase bioprocess for biofuel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Dixit, Sangita & Sahoo, Kalpana & Gaur, Mahendra & Sahoo, Rajesh Kumar & Dey, Suchanda & Gupta, Vijai Kumar & Subudhi, Enketeswara, 2023. "A meta-omics approach to explore the biofuel-producing enzyme potential from extreme environmental conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:98:y:2016:i:c:p:43-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.