IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i8p6083-6102.html
   My bibliography  Save this article

Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation

Author

Listed:
  • Meerman, J.C.
  • Ramírez, A.
  • Turkenburg, W.C.
  • Faaij, A.P.C.

Abstract

This paper investigates the economics of integrated gasification polygeneration (IG-PG) facilities and assesses under which market conditions flexible facilities outperform static facilities. In this study, the facilities use Eucalyptus wood pellets (EP), torrefied wood pellets (TOPS) and Illinois #6 coal as feedstock to produce electricity, FT-liquids, methanol and urea. All facilities incorporate CCS. The findings show production costs from static IG-PG facilities ranging between 12 and 21€/GJ using coal, 19–33€/GJ using TOPS and 22–38€/GJ using EP, which is above the average market prices. IG-PG facilities can become competitive if capital costs drop by 10%–27% for coal based facilities. Biomass based facilities will need lower biomass pellet prices or higher CO2 credit prices. Biomass becomes competitive with coal at a CO2 credit price of 50–55€/t CO2. Variations in feedstock, CO2 credit and electricity prices can be offset by operating a feedstock flexible IG-PG facility, which can switch between coal and TOPS, thereby altering its electricity production. The additional investment is around 0.5% of the capital costs of a dedicated coal based IG-PG facility. At 30€/t CO2, TOPS will be the preferred feedstock for 95% of the time at a feedstock price of 5.7€/GJ. At these conditions, FT-liquids (gasoline/diesel) can be produced for 15.8€/GJ (116 $/bbl). Historic records show price variations between 5.7 and 7.3€/GJ for biomass pellet, 1.0–5.6€/GJ for coal and 0–32€/t CO2. Within these price ranges, coal is generally the preferred feedstock, but occasionally biomass is preferred. Lower biomass prices will increase the frequency of switching feedstock preference from coal to biomass, raising the desire for flexibility. Of the three investigated chemicals, an IG-PG facility producing FT-liquids benefits the most from flexibility. Our study suggests that if the uncertainty in commodity prices is high, a small additional investment can make flexible IG-PG facilities attractive.

Suggested Citation

  • Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2012. "Performance of simulated flexible integrated gasification polygeneration facilities, Part B: Economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6083-6102.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6083-6102
    DOI: 10.1016/j.rser.2012.06.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112004236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.06.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Graham, John R. & Li, Si & Qiu, Jiaping, 2008. "Corporate misreporting and bank loan contracting," Journal of Financial Economics, Elsevier, vol. 89(1), pages 44-61, July.
    2. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    3. ,, 2007. "African Development Report 2007," OUP Catalogue, Oxford University Press, number 9780199238866.
    4. Hamelinck, Carlo N. & Faaij, André P.C. & den Uil, Herman & Boerrigter, Harold, 2004. "Production of FT transportation fuels from biomass; technical options, process analysis and optimisation, and development potential," Energy, Elsevier, vol. 29(11), pages 1743-1771.
    5. Smeets, Edward M.W. & Lewandowski, Iris M. & Faaij, André P.C., 2009. "The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1230-1245, August.
    6. AfDB AfDB, . "African Development Report 2006," African Development Report, African Development Bank, number 23 edited by Adeleke Oluwole Salami, August.
    7. Mantripragada, Hari Chandan & Rubin, Edward S., 2011. "Techno-economic evaluation of coal-to-liquids (CTL) plants with carbon capture and sequestration," Energy Policy, Elsevier, vol. 39(5), pages 2808-2816, May.
    8. AfDB AfDB, . "African Development Report 2007," African Development Report, African Development Bank, number 24 edited by Adeleke Oluwole Salami, August.
    9. AfDB AfDB, . "AfDB Group Annual Report 2006," Annual Report, African Development Bank, number 62 edited by Koua Louis Kouakou.
    10. Wipo, 2007. "WIPO PATENT REPORT, 2008 edition," WIPO Economics & Statistics Series, World Intellectual Property Organization - Economics and Statistics Division, number 2008:931, July.
    11. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    12. -, 2007. "Caribbean development report Volume I," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38725, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wolfersdorf, Christian & Boblenz, Kristin & Pardemann, Robert & Meyer, Bernd, 2015. "Syngas-based annex concepts for chemical energy storage and improving flexibility of pulverized coal combustion power plants," Applied Energy, Elsevier, vol. 156(C), pages 618-627.
    2. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    3. Berghout, Niels & Meerman, Hans & van den Broek, Machteld & Faaij, André, 2019. "Assessing deployment pathways for greenhouse gas emissions reductions in an industrial plant – A case study for a complex oil refinery," Applied Energy, Elsevier, vol. 236(C), pages 354-378.
    4. Moioli, Emanuele & Schildhauer, Tilman, 2022. "Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Kaniyal, Ashok A. & van Eyk, Philip J. & Nathan, Graham J., 2016. "Storage capacity assessment of liquid fuels production by solar gasification in a packed bed reactor using a dynamic process model," Applied Energy, Elsevier, vol. 173(C), pages 578-588.
    6. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    7. Subramanian, Avinash S.R. & Gundersen, Truls & Barton, Paul I. & Adams, Thomas A., 2022. "Global optimization of a hybrid waste tire and natural gas feedstock polygeneration system," Energy, Elsevier, vol. 250(C).
    8. Wafiq, A. & Hanafy, M., 2015. "Feasibility assessment of diesel fuel production in Egypt using coal and biomass: Integrated novel methodology," Energy, Elsevier, vol. 85(C), pages 522-533.
    9. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    10. Farhat, Karim & Reichelstein, Stefan, 2016. "Economic value of flexible hydrogen-based polygeneration energy systems," Applied Energy, Elsevier, vol. 164(C), pages 857-870.
    11. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Balance and saving of GHG emissions in thermochemical biorefineries," Applied Energy, Elsevier, vol. 147(C), pages 444-455.
    12. Jana, Kuntal & Ray, Avishek & Majoumerd, Mohammad Mansouri & Assadi, Mohsen & De, Sudipta, 2017. "Polygeneration as a future sustainable energy solution – A comprehensive review," Applied Energy, Elsevier, vol. 202(C), pages 88-111.
    13. Haro, Pedro & Aracil, Cristina & Vidal-Barrero, Fernando & Ollero, Pedro, 2015. "Rewarding of extra-avoided GHG emissions in thermochemical biorefineries incorporating Bio-CCS," Applied Energy, Elsevier, vol. 157(C), pages 255-266.
    14. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    15. Guo, Zhihang & Wang, Qinhui & Fang, Mengxiang & Luo, Zhongyang & Cen, Kefa, 2014. "Thermodynamic and economic analysis of polygeneration system integrating atmospheric pressure coal pyrolysis technology with circulating fluidized bed power plant," Applied Energy, Elsevier, vol. 113(C), pages 1301-1314.
    16. Starr, Katherine & Ramirez, Andrea & Meerman, Hans & Villalba, Gara & Gabarrell, Xavier, 2015. "Explorative economic analysis of a novel biogas upgrading technology using carbon mineralization. A case study for Spain," Energy, Elsevier, vol. 79(C), pages 298-309.
    17. Subramanian, Avinash S.R. & Kannan, Rohit & Holtorf, Flemming & Adams, Thomas A. & Gundersen, Truls & Barton, Paul I., 2023. "Optimization under uncertainty of a hybrid waste tire and natural gas feedstock flexible polygeneration system using a decomposition algorithm," Energy, Elsevier, vol. 284(C).
    18. Yang, F. & Meerman, J.C. & Faaij, A.P.C., 2021. "Carbon capture and biomass in industry: A techno-economic analysis and comparison of negative emission options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    2. Lindfeldt, Erik G. & Saxe, Maria & Magnusson, Mimmi & Mohseni, Farzad, 2010. "Strategies for a road transport system based on renewable resources - The case of an import-independent Sweden in 2025," Applied Energy, Elsevier, vol. 87(6), pages 1836-1845, June.
    3. Cédric Argenton & Bert Willems, 2012. "Exclusivity Contracts, Insurance and Financial Market Foreclosure," Journal of Industrial Economics, Wiley Blackwell, vol. 60(4), pages 609-630, December.
    4. Sergey Filippov & Kálmán Kalotay, 2009. "New Europe’s Promise for Life Sciences," Chapters, in: Wilfred Dolfsma & Geert Duysters & Ionara Costa (ed.), Multinationals and Emerging Economies, chapter 3, Edward Elgar Publishing.
    5. Sharif, Naubahar & Huang, Can, 2012. "Innovation strategy, firm survival and relocation: The case of Hong Kong-owned manufacturing in Guangdong Province, China," Research Policy, Elsevier, vol. 41(1), pages 69-78.
    6. World Bank, 2010. "Paraguay Poverty Assessment : Determinants and Challenges for Poverty Reduction [Paraguay - Estudio de pobreza : determinantes y desafíos para la reduccion de la pobreza]," World Bank Publications - Reports 12585, The World Bank Group.
    7. Carolyn Cordery & Rachel Baskerville & Brenda Porter, 2010. "Control or collaboration?," Accounting, Auditing & Accountability Journal, Emerald Group Publishing Limited, vol. 23(6), pages 793-813, August.
    8. Berrang-Ford, Lea & Dingle, Kathryn & Ford, James D. & Lee, Celine & Lwasa, Shuaib & Namanya, Didas B. & Henderson, Jim & Llanos, Alejandro & Carcamo, Cesar & Edge, Victoria, 2012. "Vulnerability of indigenous health to climate change: A case study of Uganda's Batwa Pygmies," Social Science & Medicine, Elsevier, vol. 75(6), pages 1067-1077.
    9. Philip Antwi-Agyei & Andrew Dougill & Evan Fraser & Lindsay Stringer, 2013. "Characterising the nature of household vulnerability to climate variability: empirical evidence from two regions of Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(4), pages 903-926, August.
    10. Fischer, Klara, 2016. "Why new crop technology is not scale-neutral—A critique of the expectations for a crop-based African Green Revolution," Research Policy, Elsevier, vol. 45(6), pages 1185-1194.
    11. Catherine N. Munyua & Isabel N. Wagara, 2015. "Diversification and a multidisciplinary approach for raising agriculture production and attaining food security in smallholder farming systems of sub-Saharan Africa," Asian Journal of Agriculture and rural Development, Asian Economic and Social Society, vol. 5(10), pages 218-224, October.
    12. Winfield, Mark & Gibson, Robert B. & Markvart, Tanya & Gaudreau, Kyrke & Taylor, Jennifer, 2010. "Implications of sustainability assessment for electricity system design: The case of the Ontario Power Authority's integrated power system plan," Energy Policy, Elsevier, vol. 38(8), pages 4115-4126, August.
    13. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    14. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    15. Qin, Shiyue & Chang, Shiyan & Yao, Qiang, 2018. "Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers," Applied Energy, Elsevier, vol. 229(C), pages 413-432.
    16. Hoefnagels, Ric & Resch, Gustav & Junginger, Martin & Faaij, André, 2014. "International and domestic uses of solid biofuels under different renewable energy support scenarios in the European Union," Applied Energy, Elsevier, vol. 131(C), pages 139-157.
    17. Qin, Shiyue & Zhang, Xuzhi & Wang, Ming & Cui, Hongyou & Li, Zhihe & Yi, Weiming, 2021. "Comparison of BGL and Lurgi gasification for coal to liquid fuels (CTL): Process modeling, simulation and thermodynamic analysis," Energy, Elsevier, vol. 229(C).
    18. Mohajerani, Sara & Kumar, Amit & Oni, Abayomi Olufemi, 2018. "A techno-economic assessment of gas-to-liquid and coal-to-liquid plants through the development of scale factors," Energy, Elsevier, vol. 150(C), pages 681-693.
    19. Gerssen-Gondelach, S.J. & Saygin, D. & Wicke, B. & Patel, M.K. & Faaij, A.P.C., 2014. "Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 964-998.
    20. Holmgren, Kristina M. & Berntsson, Thore & Andersson, Eva & Rydberg, Tomas, 2012. "System aspects of biomass gasification with methanol synthesis – Process concepts and energy analysis," Energy, Elsevier, vol. 45(1), pages 817-828.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:8:p:6083-6102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.