IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v16y2012i3p1426-1436.html
   My bibliography  Save this article

Review of sustainable biomass pellets production – A study for agricultural residues pellets’ market in Greece

Author

Listed:
  • Karkania, V.
  • Fanara, E.
  • Zabaniotou, A.

Abstract

Agro residues constitute the biggest source of biomass in Greece. Although large amounts of agricultural residues are produced in Greece each year, their contribution towards meeting national energy demand has remained rather low due to inefficient and unplanned use. These residues have low heating value per unit volume and high transportation and storage costs when used in as received condition; these difficulties can be largely overcome through densification which is an effective approach for using residues efficiently. Densification offers an opportunity to make biomass easier to handle and transport. The cost of the endeavor is a challenge. However, there is a need to consider a system that operates year around with several biomass materials. The investigation in the Greek and the international market shows that mixed biomass pellets are promising fuels and with the appropriate support these fuels have many prospects for the future. The use of biomass pellets would not only create new market opportunities for agricultural industries, it would also reduce dependence on coal, as well as the greenhouse gas emissions associated with coal use.

Suggested Citation

  • Karkania, V. & Fanara, E. & Zabaniotou, A., 2012. "Review of sustainable biomass pellets production – A study for agricultural residues pellets’ market in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1426-1436.
  • Handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1426-1436
    DOI: 10.1016/j.rser.2011.11.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032111005740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2011.11.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahmood Ebadian & Shahab Sokhansanj & David Lee & Alyssa Klein & Lawrence Townley-Smith, 2021. "Evaluating the Economic Viability of Agricultural Pellets to Supplement the Current Global Wood Pellets Supply for Bioenergy Production," Energies, MDPI, vol. 14(8), pages 1-19, April.
    2. Anukam, Anthony & Berghel, Jonas & Henrikson, Gunnar & Frodeson, Stefan & Ståhl, Magnus, 2021. "A review of the mechanism of bonding in densified biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Proskurina, Svetlana & Heinimö, Jussi & Mikkilä, Mirja & Vakkilainen, Esa, 2015. "The wood pellet business in Russia with the role of North-West Russian regions: Present trends and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 730-740.
    4. Kumar, R. & Strezov, V. & Weldekidan, H. & He, J. & Singh, S. & Kan, T. & Dastjerdi, B., 2020. "Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    5. Atay, Orhan Alp & Ekinci, Kamil, 2020. "Characterization of pellets made from rose oil processing solid wastes/coal powder/pine bark," Renewable Energy, Elsevier, vol. 149(C), pages 933-939.
    6. Nicolás M. Clauser & Giselle González & Carolina M. Mendieta & Julia Kruyeniski & María C. Area & María E. Vallejos, 2021. "Biomass Waste as Sustainable Raw Material for Energy and Fuels," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    7. Singh, Rishikesh kumar & Sarkar, Arnab & Chakraborty, Jyoti Prasad, 2019. "Effect of torrefaction on the physicochemical properties of pigeon pea stalk (Cajanus cajan) and estimation of kinetic parameters," Renewable Energy, Elsevier, vol. 138(C), pages 805-819.
    8. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    9. Nunes, L.J.R. & Matias, J.C.O. & Catalão, J.P.S., 2014. "Mixed biomass pellets for thermal energy production: A review of combustion models," Applied Energy, Elsevier, vol. 127(C), pages 135-140.
    10. Whittaker, Carly & Shield, Ian, 2017. "Factors affecting wood, energy grass and straw pellet durability – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 1-11.
    11. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    12. Aneta Saletnik & Bogdan Saletnik & Czesław Puchalski, 2021. "Modification of Energy Parameters in Wood Pellets with the Use of Waste Cooking Oil," Energies, MDPI, vol. 14(20), pages 1-16, October.
    13. Thomson, Harriet & Liddell, Christine, 2015. "The suitability of wood pellet heating for domestic households: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1362-1369.
    14. Boso, Àlex & Oltra, Christian & Hofflinger, Álvaro, 2019. "Participation in a programme for assisted replacement of wood-burning stoves in Chile: The role of sociodemographic factors, evaluation of air quality and risk perception," Energy Policy, Elsevier, vol. 129(C), pages 1220-1226.
    15. Feng, Cheng & Yu, Xinxin & Tan, Hanqiu & Liu, Tian & Hu, Tianyu & Zhang, Zhuoyan & Qiu, Shi & Chen, Longjian, 2013. "The economic feasibility of a crop-residue densification plant: A case study for the city of Jinzhou in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 172-180.
    16. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    17. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    18. Martín-Gamboa, Mario & Marques, Pedro & Freire, Fausto & Arroja, Luís & Dias, Ana Cláudia, 2020. "Life cycle assessment of biomass pellets: A review of methodological choices and results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    19. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    20. Leontiev, Alexandr & Kichatov, Boris & Korshunov, Alexey & Kiverin, Alexey & Medvetskaya, Natalia & Melnikova, Ksenia, 2018. "Oxidative torrefaction of briquetted birch shavings in the bentonite," Energy, Elsevier, vol. 165(PA), pages 303-313.
    21. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chai, Li & Saffron, Christopher M., 2016. "Comparing pelletization and torrefaction depots: Optimization of depot capacity and biomass moisture to determine the minimum production cost," Applied Energy, Elsevier, vol. 163(C), pages 387-395.
    2. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    3. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    4. Qi, Jianhui & Zhao, Jianli & Xu, Yang & Wang, Yongjia & Han, Kuihua, 2018. "Segmented heating carbonization of biomass: Yields, property and estimation of heating value of chars," Energy, Elsevier, vol. 144(C), pages 301-311.
    5. Elodie Le Cadre & Caroline Orset, 2010. "Irreversible investment, uncertainty, and ambiguity: The case of bioenergy sector," Working Papers 2010/03, INRA, Economie Publique.
    6. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    7. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    10. Rousset, P. & Fernandes, K. & Vale, A. & Macedo, L. & Benoist, A., 2013. "Change in particle size distribution of Torrefied biomass during cold fluidization," Energy, Elsevier, vol. 51(C), pages 71-77.
    11. Agar, David A. & Rudolfsson, Magnus & Lavergne, Simon & Melkior, Thierry & Da Silva Perez, Denilson & Dupont, Capucine & Campargue, Matthieu & Kalén, Gunnar & Larsson, Sylvia H., 2021. "Pelleting torrefied biomass at pilot-scale – Quality and implications for co-firing," Renewable Energy, Elsevier, vol. 178(C), pages 766-774.
    12. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    13. Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
    14. Suopajärvi, Hannu & Pongrácz, Eva & Fabritius, Timo, 2013. "The potential of using biomass-based reducing agents in the blast furnace: A review of thermochemical conversion technologies and assessments related to sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 511-528.
    15. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    16. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    17. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    18. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    19. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    20. Kambo, Harpreet Singh & Dutta, Animesh, 2014. "Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization," Applied Energy, Elsevier, vol. 135(C), pages 182-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:16:y:2012:i:3:p:1426-1436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.