IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v224y2024ipbp2-18.html
   My bibliography  Save this article

Tool for optimization of sale and storage of energy in wind farms

Author

Listed:
  • Celades, Eloy
  • Pérez, Emilio
  • Aparicio, Néstor
  • Peñarrocha-Alós, Ignacio

Abstract

In this work we address the problem of energy management in a wind farm supported by an Energy Storage System (ESS) that operates in an electricity market with six intraday sessions and with penalty policies for imbalances between commitments and the energy really injected. We face it through a cascade of model predictive controllers that also require the design of predictors for wind and electricity market price forecasts. The master controller is executed synchronously with the market sessions and decides the commitments. The slave controller is executed each hour and decides the energy that should be sold to minimize the economical penalties if the commitment is not achievable. Finally, a real-time controller decides how to manage the energy storage in the ESS to sell the desired energy when possible. We use historical real data for the design and validation of the approach and show its benefits. The results show that the cascade structure helps to adequately adapt the energy committed in the intraday market. We also obtain the necessary prices on batteries so that their use is profitable.

Suggested Citation

  • Celades, Eloy & Pérez, Emilio & Aparicio, Néstor & Peñarrocha-Alós, Ignacio, 2024. "Tool for optimization of sale and storage of energy in wind farms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 2-18.
  • Handle: RePEc:eee:matcom:v:224:y:2024:i:pb:p:2-18
    DOI: 10.1016/j.matcom.2023.03.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475423001167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2023.03.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ocker, Fabian & Jaenisch, Vincent, 2020. "The way towards European electricity intraday auctions – Status quo and future developments," Energy Policy, Elsevier, vol. 145(C).
    2. Bourbon, R. & Ngueveu, S.U. & Roboam, X. & Sareni, B. & Turpin, C. & Hernandez-Torres, D., 2019. "Energy management optimization of a smart wind power plant comparing heuristic and linear programming methods," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 158(C), pages 418-431.
    3. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    4. Ayodele, T.R. & Ogunjuyigbe, A.S.O., 2015. "Mitigation of wind power intermittency: Storage technology approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 447-456.
    5. Katarzyna Maciejowska & Weronika Nitka & Tomasz Weron, 2019. "Day-Ahead vs. Intraday—Forecasting the Price Spread to Maximize Economic Benefits," Energies, MDPI, vol. 12(4), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hakan Acaroğlu & Fausto Pedro García Márquez, 2021. "Comprehensive Review on Electricity Market Price and Load Forecasting Based on Wind Energy," Energies, MDPI, vol. 14(22), pages 1-23, November.
    2. Ocker, Fabian & Jaenisch, Vincent, 2020. "The way towards European electricity intraday auctions – Status quo and future developments," Energy Policy, Elsevier, vol. 145(C).
    3. Jose R. Cedeño González & Juan J. Flores & Claudio R. Fuerte-Esquivel & Boris A. Moreno-Alcaide, 2020. "Nearest Neighbors Time Series Forecaster Based on Phase Space Reconstruction for Short-Term Load Forecasting," Energies, MDPI, vol. 13(20), pages 1-24, October.
    4. Katarzyna Maciejowska, 2022. "A portfolio management of a small RES utility with a Structural Vector Autoregressive model of German electricity markets," Papers 2205.00975, arXiv.org.
    5. Katarzyna Maciejowska & Bartosz Uniejewski & Tomasz Serafin, 2020. "PCA Forecast Averaging—Predicting Day-Ahead and Intraday Electricity Prices," Energies, MDPI, vol. 13(14), pages 1-19, July.
    6. Uniejewski, Bartosz & Maciejowska, Katarzyna, 2023. "LASSO principal component averaging: A fully automated approach for point forecast pooling," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1839-1852.
    7. Bertsiou, M. & Feloni, E. & Karpouzos, D. & Baltas, E., 2018. "Water management and electricity output of a Hybrid Renewable Energy System (HRES) in Fournoi Island in Aegean Sea," Renewable Energy, Elsevier, vol. 118(C), pages 790-798.
    8. Joanna Janczura & Aleksandra Michalak, 2020. "Optimization of Electric Energy Sales Strategy Based on Probabilistic Forecasts," Energies, MDPI, vol. 13(5), pages 1-16, February.
    9. Yuan, Qiheng & Zhou, Keliang & Yao, Jing, 2020. "A new measure of wind power variability with implications for the optimal sizing of standalone wind power systems," Renewable Energy, Elsevier, vol. 150(C), pages 538-549.
    10. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2016. "Optimal allocation and sizing of PV/Wind/Split-diesel/Battery hybrid energy system for minimizing life cycle cost, carbon emission and dump energy of remote residential building," Applied Energy, Elsevier, vol. 171(C), pages 153-171.
    11. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    12. Kim, Taewan & Song, Jeonghwan & You, Donghyun, 2024. "Optimization of a wind farm layout to mitigate the wind power intermittency," Applied Energy, Elsevier, vol. 367(C).
    13. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    14. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1533-1547.
    15. Ferahtia, Seydali & Djeroui, Ali & Rezk, Hegazy & Houari, Azeddine & Zeghlache, Samir & Machmoum, Mohamed, 2022. "Optimal control and implementation of energy management strategy for a DC microgrid," Energy, Elsevier, vol. 238(PB).
    16. Eicke, Anselm & Schittekatte, Tim, 2022. "Fighting the wrong battle? A critical assessment of arguments against nodal electricity prices in the European debate," Energy Policy, Elsevier, vol. 170(C).
    17. Tee, Wei Hown & Gan, Chin Kim & Sardi, Junainah, 2024. "Benefits of energy storage systems and its potential applications in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    18. Felgenhauer, Markus F. & Pellow, Matthew A. & Benson, Sally M. & Hamacher, Thomas, 2016. "Evaluating co-benefits of battery and fuel cell vehicles in a community in California," Energy, Elsevier, vol. 114(C), pages 360-368.
    19. Salehizadeh, Mohammad Reza & Soltaniyan, Salman, 2016. "Application of fuzzy Q-learning for electricity market modeling by considering renewable power penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1172-1181.
    20. Antoine Ferré & Guillaume de Certaines & Jérôme Cazelles & Tancrède Cohet & Arash Farnoosh & Frédéric Lantz, 2021. "Short-term electricity price forecastingmodels comparative analysis : Machine Learning vs. Econometrics," Working Papers hal-03262208, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:224:y:2024:i:pb:p:2-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.