IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v165y2022ics1364032122004312.html
   My bibliography  Save this article

Improving material selection in shopping centres through a parametric life cycle embodied flow and material cost analysis model

Author

Listed:
  • Weththasinghe, K.K.
  • Stephan, A.
  • Francis, V.
  • Tiwari, P.

Abstract

Shopping centres are significant built assets and part of the urban fabric in most developed economies. Yet very few studies have conducted a life cycle assessment of shopping centres, despite them using significant amounts of energy and resources throughout their life cycle. This paper presents a parametric model that quantifies the life cycle embodied flow (LCEF) and material cost (LCMC) of Australian shopping centres to inform material selection. Different combinations of building materials and assemblies are identified with minimum LCEF and LCMC for 13 different shop categories typical in shopping centres. The parametric model is used to simulate a case study centre which tests and analyses over 8820 scenarios and delivers benchmark values for the LCEF and LCMC of shopping centres. It shows that a typical centre using concrete and steel, average embodied flow intensities are 14.2 GJ/m2 and 830 kgCO2e/m2. It further demonstrates recurrent embodied flow, which is currently disregarded, is significant and represents up to 56% of the LCEF of a shopping centre over a period of 50 years. Results show that specific assembly combinations could achieve up to 32% LCEF reductions while saving up to 17% on material costs. Foundations and roof structure are identified as the most crucial of building elements for reducing embodied flow in the centre structure. This paper contributes to the embodied environmental impact assessment efforts and the energy-cost nexus by facilitating the appraisal and demonstrating broader societal impacts in making the built environment more economically and environmentally sustainable.

Suggested Citation

  • Weththasinghe, K.K. & Stephan, A. & Francis, V. & Tiwari, P., 2022. "Improving material selection in shopping centres through a parametric life cycle embodied flow and material cost analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004312
    DOI: 10.1016/j.rser.2022.112530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122004312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Richard J. & Sener, Ipek N. & Mokhtarian, Patricia L. & Handy, Susan L., 2017. "Relationships between the online and in-store shopping frequency of Davis, California residents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 40-52.
    2. Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
    3. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    4. Govindan, Kannan & Madan Shankar, K. & Kannan, Devika, 2016. "Sustainable material selection for construction industry – A hybrid multi criteria decision making approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1274-1288.
    5. Minunno, Roberto & O'Grady, Timothy & Morrison, Gregory M. & Gruner, Richard L., 2021. "Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Colling, A.V. & Oliveira, L.B. & Reis, M.M. & da Cruz, N.T. & Hunt, J.D., 2016. "Brazilian recycling potential: Energy consumption and Green House Gases reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 544-549.
    7. Lowry, James R., 1997. "The life cycle of shopping centers," Business Horizons, Elsevier, vol. 40(1), pages 77-86.
    8. Anselmsson, Johan, 2016. "Effects of shopping centre re-investments and improvements on sales and visit growth," Journal of Retailing and Consumer Services, Elsevier, vol. 32(C), pages 139-150.
    9. Katie Williams & Carol Dair, 2007. "What is stopping sustainable building in England? Barriers experienced by stakeholders in delivering sustainable developments," Sustainable Development, John Wiley & Sons, Ltd., vol. 15(3), pages 135-147.
    10. Ferreira, Ana & Pinheiro, Manuel Duarte & de Brito, Jorge & Mateus, Ricardo, 2018. "Combined carbon and energy intensity benchmarks for sustainable retail stores," Energy, Elsevier, vol. 165(PB), pages 877-889.
    11. Crawford, Robert H. & Bartak, Erika L. & Stephan, André & Jensen, Christopher A., 2016. "Evaluating the life cycle energy benefits of energy efficiency regulations for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 435-451.
    12. Tang, Ailie K.Y. & Lai, Kee-hung & Cheng, T.C.E., 2016. "A Multi-research-method approach to studying environmental sustainability in retail operations," International Journal of Production Economics, Elsevier, vol. 171(P3), pages 394-404.
    13. Pomponi, Francesco & Moncaster, Alice, 2018. "Scrutinising embodied carbon in buildings: The next performance gap made manifest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2431-2442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    2. Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    3. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    4. Luiz de Mello, 2023. "Real Estate in a Post-Pandemic World: How Can Policies Make Housing More Enviromentally Sustainable and Affordable?," Hacienda Pública Española / Review of Public Economics, IEF, vol. 244(1), pages 111-139, March.
    5. Jim Hart & Francesco Pomponi, 2020. "More Timber in Construction: Unanswered Questions and Future Challenges," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    6. Röck, Martin & Baldereschi, Elena & Verellen, Evelien & Passer, Alexander & Sala, Serenella & Allacker, Karen, 2021. "Environmental modelling of building stocks – An integrated review of life cycle-based assessment models to support EU policy making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Wei Wang & Shoujian Zhang & Yikun Su & Xinyang Deng, 2019. "An Empirical Analysis of the Factors Affecting the Adoption and Diffusion of GBTS in the Construction Market," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
    8. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    9. Pan, Junyu & Du, Lizhao & Wu, Haitao & Liu, Xiaoqian, 2024. "Does environmental law enforcement supervision improve corporate carbon reduction performance? Evidence from environmental protection interview," Energy Economics, Elsevier, vol. 132(C).
    10. Hänninen, Mikko & Paavola, Lauri, 2021. "Managing transformations in retail agglomerations:Case Itis shopping center," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    11. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    12. Jacek Michalak & Bartosz Michałowski, 2022. "Understanding Sustainability of Construction Products: Answers from Investors, Contractors, and Sellers of Building Materials," Sustainability, MDPI, vol. 14(5), pages 1-14, March.
    13. Maria Cristina Collivignarelli & Giacomo Cillari & Paola Ricciardi & Marco Carnevale Miino & Vincenzo Torretta & Elena Cristina Rada & Alessandro Abbà, 2020. "The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review," Sustainability, MDPI, vol. 12(19), pages 1-34, September.
    14. Marin Pellan & Denise Almeida & Mathilde Louërat & Guillaume Habert, 2024. "Integrating Consumption-Based Metrics into Sectoral Carbon Budgets to Enhance Sustainability Monitoring of Building Activities," Sustainability, MDPI, vol. 16(16), pages 1-25, August.
    15. Shi, Kunbo & De Vos, Jonas & Cheng, Long & Yang, Yongchun & Witlox, Frank, 2021. "The influence of the built environment on online purchases of intangible services: Examining the mediating role of online purchase attitudes," Transport Policy, Elsevier, vol. 114(C), pages 116-126.
    16. Fahlstedt, Oskar & Temeljotov-Salaj, Alenka & Lohne, Jardar & Bohne, Rolf André, 2022. "Holistic assessment of carbon abatement strategies in building refurbishment literature — A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    17. Cerdan-Chiscano, Monica & Darcy, Simon, 2024. "Managing the co-creation of accessible and inclusive family recreation retail encounters: A critical incident analysis," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
    18. Dahl Winters & Kwaku Boakye & Steven Simske, 2022. "Toward Carbon-Neutral Concrete through Biochar–Cement–Calcium Carbonate Composites: A Critical Review," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    19. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    20. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.