IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v53y2024ics1755534524000538.html
   My bibliography  Save this article

Modelling household online shopping and home delivery demand using latent class & ordinal generalized extreme value (GEV) models

Author

Listed:
  • Wang, Kaili
  • Gao, Ya
  • Nurul Habib, Khandker

Abstract

The surge in e-commerce during the past decade has led to dramatic changes in consumer shopping behaviour. The study applies two Generalized Extreme Value (GEV) family models to investigate households' e-shopping demands. The study proposes a model structure to jointly model ordinal-based choice behaviour with choice-makers' latent class membership. Introducing latent class structure with the OGEV formulation accounts for the relationship between choice-makers heterogeneous preferential groups and their ordinal choice outcomes. Furthermore, the study also applies the Ordered General Extreme Value (OGEV)-Negative Binomial (NB) model, capturing the interplay between consumers' in-store shopping demands and online shopping behaviour. The RUM principle inherited within the OGEV-NB model allows econometric valuation of in-store shopping activity explicitly considering households' e-shopping demands. Both models are empirically estimated using a dataset collected in the Greater Toronto Area (GTA), Canada. The empirical findings and behavioural implications are also discussed.

Suggested Citation

  • Wang, Kaili & Gao, Ya & Nurul Habib, Khandker, 2024. "Modelling household online shopping and home delivery demand using latent class & ordinal generalized extreme value (GEV) models," Journal of choice modelling, Elsevier, vol. 53(C).
  • Handle: RePEc:eee:eejocm:v:53:y:2024:i:c:s1755534524000538
    DOI: 10.1016/j.jocm.2024.100521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534524000538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2024.100521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Small, Kenneth A, 1987. "A Discrete Choice Model for Ordered Alternatives," Econometrica, Econometric Society, vol. 55(2), pages 409-424, March.
    2. Hess, Stephane & Train, Kenneth, 2017. "Correlation and scale in mixed logit models," Journal of choice modelling, Elsevier, vol. 23(C), pages 1-8.
    3. Yan Huang & Liang Ma & Jonas De Vos, 2024. "Travel behaviour and multimodality: a conceptual framework and critical review of research," Transport Reviews, Taylor & Francis Journals, vol. 44(3), pages 709-730, May.
    4. Rotem-Mindali, Orit & Salomon, Ilan, 2007. "The impacts of E-retail on the choice of shopping trips and delivery: Some preliminary findings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(2), pages 176-189, February.
    5. Anil NP Koushik & M. Manoj & N. Nezamuddin, 2020. "Machine learning applications in activity-travel behaviour research: a review," Transport Reviews, Taylor & Francis Journals, vol. 40(3), pages 288-311, May.
    6. Lee, Richard J. & Sener, Ipek N. & Mokhtarian, Patricia L. & Handy, Susan L., 2017. "Relationships between the online and in-store shopping frequency of Davis, California residents," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 40-52.
    7. Wang, Kaili & Liu, Yicong & Mashrur, Sk Md & Loa, Patrick & Habib, Khandker Nurul, 2021. "COVid-19 influenced households’ Interrupted Travel Schedules (COVHITS) survey: Lessons from the fall 2020 cycle," Transport Policy, Elsevier, vol. 112(C), pages 43-62.
    8. Jason Hawkins & Khandker Nurul Habib, 2020. "Heterogeneity in marginal value of urban mobility: evidence from a large-scale household travel survey in the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 47(6), pages 3091-3108, December.
    9. Wang, Kaili & Gao, Ya & Liu, Yicong & Nurul Habib, Khandker, 2023. "Exploring the choice between in-store versus online grocery shopping through an application of Semi-Compensatory Independent Availability Logit (SCIAL) model with latent variables," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    10. Saphores, Jean-Daniel & Xu, Lu, 2021. "E-shopping changes and the state of E-grocery shopping in the US - Evidence from national travel and time use surveys," Research in Transportation Economics, Elsevier, vol. 87(C).
    11. Schmid, Basil & Axhausen, Kay W., 2019. "In-store or online shopping of search and experience goods: A hybrid choice approach," Journal of choice modelling, Elsevier, vol. 31(C), pages 156-180.
    12. Cao, Xinyu (Jason), 2012. "The relationships between e-shopping and store shopping in the shopping process of search goods," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 993-1002.
    13. Xinyu Cao & Zhiyi Xu & Frank Douma, 2012. "The interactions between e-shopping and traditional in-store shopping: an application of structural equations model," Transportation, Springer, vol. 39(5), pages 957-974, September.
    14. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    15. Sascha Hoogendoorn-Lanser & Marie-José Olde Kalter & Nina T. W. Schaap, 2019. "Impact of different shopping stages on shopping-related travel behaviour: analyses of the Netherlands Mobility Panel data," Transportation, Springer, vol. 46(2), pages 341-371, April.
    16. Dominici, Andrea & Boncinelli, Fabio & Gerini, Francesca & Marone, Enrico, 2021. "Determinants of online food purchasing: The impact of socio-demographic and situational factors," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    17. Patricia Mokhtarian, 2004. "A conceptual analysis of the transportation impacts of B2C e-commerce," Transportation, Springer, vol. 31(3), pages 257-284, August.
    18. Sendy Farag & Jesse Weltevreden & Ton van Rietbergen & Martin Dijst & Frank van Oort, 2006. "E-Shopping in the Netherlands: Does Geography Matter?," Environment and Planning B, , vol. 33(1), pages 59-74, February.
    19. Limon Barua & Bo Zou & Yan Zhou & Yulin Liu, 2023. "Modeling household online shopping demand in the U.S.: a machine learning approach and comparative investigation between 2009 and 2017," Transportation, Springer, vol. 50(2), pages 437-476, April.
    20. Shah, Harsh & Carrel, Andre L. & Le, Huyen T.K., 2021. "What is your shopping travel style? Heterogeneity in US households’ online shopping and travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 83-98.
    21. Beckers, Joris & Weekx, Simon & Beutels, Philippe & Verhetsel, Ann, 2021. "COVID-19 and retail: The catalyst for e-commerce in Belgium?," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    22. Adibfar, Alireza & Gulhare, Siddhartha & Srinivasan, Siva & Costin, Aaron, 2022. "Analysis and modeling of changes in online shopping behavior due to Covid-19 pandemic: A Florida case study," Transport Policy, Elsevier, vol. 126(C), pages 162-176.
    23. Hou, Jianwei & Elliott, Kevin, 2021. "Mobile shopping intensity: Consumer demographics and motivations," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    24. Pantano, Eleonora & Pizzi, Gabriele & Scarpi, Daniele & Dennis, Charles, 2020. "Competing during a pandemic? Retailers’ ups and downs during the COVID-19 outbreak," Journal of Business Research, Elsevier, vol. 116(C), pages 209-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Lu & Saphores, Jean-Daniel, 2024. "Does e-shopping impact household travel? Evidence from the 2017 U.S. NHTS," Journal of Transport Geography, Elsevier, vol. 115(C).
    2. Cano-Leiva, José & Gomez, Juan & Alves, Guilherme F. & Manuel Vassallo, José, 2024. "How has COVID-19 changed individuals’ e-commerce and shopping mobility habits? Evidence from Madrid Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    3. Shah, Harsh & Carrel, Andre L. & Le, Huyen T.K., 2021. "What is your shopping travel style? Heterogeneity in US households’ online shopping and travel," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 83-98.
    4. Wang, Kaili & Gao, Ya & Liu, Yicong & Nurul Habib, Khandker, 2023. "Exploring the choice between in-store versus online grocery shopping through an application of Semi-Compensatory Independent Availability Logit (SCIAL) model with latent variables," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    5. Shi, Kunbo & De Vos, Jonas & Yang, Yongchun & Witlox, Frank, 2019. "Does e-shopping replace shopping trips? Empirical evidence from Chengdu, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 21-33.
    6. Chen, Liyuan & Wang, Kaili & Nurul Habib, Khandker, 2024. "A household-based online cooked meal delivery demand generation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 190(C).
    7. Kim, Woojung & Wang, Xiaokun Cara, 2022. "The adoption of alternative delivery locations in New York City: Who and how far?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 127-140.
    8. Tri Basuki Joewono & Ari K. M. Tarigan & Muhamad Rizki, 2019. "Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country," Sustainability, MDPI, vol. 11(6), pages 1-23, March.
    9. Minh Hieu Nguyen & Jimmy Armoogum & Binh Nguyen Thi, 2021. "Factors Affecting the Growth of E-Shopping over the COVID-19 Era in Hanoi, Vietnam," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    10. Patricia L. Mokhtarian & Wei (Laura) Tang, 2013. "Trivariate probit models of pre-purchase/purchase shopping channel choice: clothing purchases in Northern California," Chapters, in: Stephane Hess & Andrew Daly (ed.), Choice Modelling, chapter 12, pages 243-273, Edward Elgar Publishing.
    11. Calderwood, Eric & Freathy, Paul, 2014. "Consumer mobility in the Scottish isles: The impact of internet adoption upon retail travel patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 192-203.
    12. Zhou, Yiwei & Wang, Xiaokun (Cara), 2014. "Explore the relationship between online shopping and shopping trips: An analysis with the 2009 NHTS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 1-9.
    13. Shi, Kunbo & De Vos, Jonas & Cheng, Long & Yang, Yongchun & Witlox, Frank, 2021. "The influence of the built environment on online purchases of intangible services: Examining the mediating role of online purchase attitudes," Transport Policy, Elsevier, vol. 114(C), pages 116-126.
    14. Li, Shengxiao (Alex), 2023. "Revisiting the relationship between information and communication technologies and travel behavior: An investigation of older Americans," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    15. Weltevreden, Jesse W.J. & Rotem-Mindali, Orit, 2009. "Mobility effects of b2c and c2c e-commerce in the Netherlands: a quantitative assessment," Journal of Transport Geography, Elsevier, vol. 17(2), pages 83-92.
    16. Pernot, Delphine, 2021. "Internet shopping for Everyday Consumer Goods: An examination of the purchasing and travel practices of click and pickup outlet customers," Research in Transportation Economics, Elsevier, vol. 87(C).
    17. Wang, Xueqin & Wong, Yiik Diew & Shi, Wenming & Yuen, Kum Fai, 2022. "Shoppers’ logistics activities in omni-channel retailing: A conceptualisation and an exploration on perceptual differences in effort valuation," Transport Policy, Elsevier, vol. 115(C), pages 195-208.
    18. Xi, Guangliang & Cao, Xinyu & Zhen, Feng, 2020. "The impacts of same day delivery online shopping on local store shopping in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 35-47.
    19. Alexander Rossolov & Halyna Rossolova & José Holguín-Veras, 2021. "Online and in-store purchase behavior: shopping channel choice in a developing economy," Transportation, Springer, vol. 48(6), pages 3143-3179, December.
    20. Gigliotti, Marina & Rizzi, Francesco, 2023. "Resilient shopping behaviours by change, not by chance: are disruptive events’ effects permanent?," Journal of Retailing and Consumer Services, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:53:y:2024:i:c:s1755534524000538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.