IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8840-d1159891.html
   My bibliography  Save this article

Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level

Author

Listed:
  • Claudio Zandonella Callegher

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Gianluca Grazieschi

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Eric Wilczynski

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Ulrich Filippi Oberegger

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

  • Simon Pezzutto

    (Institute for Renewable Energy, European Academy of Bolzano (EURAC Research), Viale Druso 1, 39100 Bolzano, Italy)

Abstract

Reducing greenhouse gas (GHG) emissions and energy consumption in the building sector requires not only improving the energy efficiency of buildings but also minimising material requirements, embodied emissions, and waste generation. Circular Economy (CE) principles can be applied to minimize resource extraction and waste generation in the building industry. However, to implement effective CE strategies, quantification and evaluation of materials accumulated in buildings are required. This study aims to provide accurate data and a detailed analysis of the materials available in the EU27 residential building sector. By elaborating the data provided by the H2020 European projects Hotmaps and AmBIENCe, the different materials used for floors, roofs, walls, windows, and insulation layers in single-family houses, multifamily houses, and apartment blocks in the different construction periods were quantified for each EU27 country. Considering results at the EU27 level, concrete and brick characterize the largest part of the European residential building stock, whereas materials such as wood and different types of rock are used in much more limited amounts. These results form the basis for policymakers to monitor the status of the residential building sector, evaluate the potential of CE policies at a national level, and assess the environmental impact of building practices through lifecycle assessment.

Suggested Citation

  • Claudio Zandonella Callegher & Gianluca Grazieschi & Eric Wilczynski & Ulrich Filippi Oberegger & Simon Pezzutto, 2023. "Assessment of Building Materials in the European Residential Building Stock: An Analysis at EU27 Level," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8840-:d:1159891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
    2. Röck, Martin & Saade, Marcella Ruschi Mendes & Balouktsi, Maria & Rasmussen, Freja Nygaard & Birgisdottir, Harpa & Frischknecht, Rolf & Habert, Guillaume & Lützkendorf, Thomas & Passer, Alexander, 2020. "Embodied GHG emissions of buildings – The hidden challenge for effective climate change mitigation," Applied Energy, Elsevier, vol. 258(C).
    3. Francesco Asdrubali & Marta Roncone & Gianluca Grazieschi, 2021. "Embodied Energy and Embodied GWP of Windows: A Critical Review," Energies, MDPI, vol. 14(13), pages 1-17, June.
    4. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    5. Korhonen, Jouni & Honkasalo, Antero & Seppälä, Jyri, 2018. "Circular Economy: The Concept and its Limitations," Ecological Economics, Elsevier, vol. 143(C), pages 37-46.
    6. Georg Schiller & Karin Gruhler & Regine Ortlepp, 2017. "Continuous Material Flow Analysis Approach for Bulk Nonmetallic Mineral Building Materials Applied to the German Building Sector," Journal of Industrial Ecology, Yale University, vol. 21(3), pages 673-688, June.
    7. Hiroki Tanikawa & Tomer Fishman & Keijiro Okuoka & Kenji Sugimoto, 2015. "The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 778-791, October.
    8. Babí Almenar, Javier & Elliot, Thomas & Rugani, Benedetto & Philippe, Bodénan & Navarrete Gutierrez, Tomas & Sonnemann, Guido & Geneletti, Davide, 2021. "Nexus between nature-based solutions, ecosystem services and urban challenges," Land Use Policy, Elsevier, vol. 100(C).
    9. Teun Johannes Verhagen & Marijn Louise Sauer & Ester van der Voet & Benjamin Sprecher, 2021. "Matching Demolition and Construction Material Flows, an Urban Mining Case Study," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Wang & Shupeng Li & Zijian Lin & Jiancong Ye & Yi Yang & Qiang Yue, 2024. "Modeling Aluminum Stocks and Flows in China until 2050 Using a Bottom-Up Approach: Business-As-Usual Scenario Analysis," Sustainability, MDPI, vol. 16(18), pages 1-14, September.
    2. Jordana de Oliveira & Dusan Schreiber & Vanusca Dalosto Jahno, 2024. "Circular Economy and Buildings as Material Banks in Mitigation of Environmental Impacts from Construction and Demolition Waste," Sustainability, MDPI, vol. 16(12), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafaela Tirado & Adélaïde Aublet & Sylvain Laurenceau & Mathieu Thorel & Mathilde Louërat & Guillaume Habert, 2021. "Component-Based Model for Building Material Stock and Waste-Flow Characterization: A Case in the Île-de-France Region," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    2. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    3. Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
    4. Franz Schug & David Frantz & Dominik Wiedenhofer & Helmut Haberl & Doris Virág & Sebastian van der Linden & Patrick Hostert, 2023. "High‐resolution mapping of 33 years of material stock and population growth in Germany using Earth Observation data," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 110-124, February.
    5. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    6. Georg Schiller & Tamara Bimesmeier & Anh T.V. Pham, 2020. "Method for Quantifying Supply and Demand of Construction Minerals in Urban Regions—A Case Study of Hanoi and Its Hinterland," Sustainability, MDPI, vol. 12(11), pages 1-23, May.
    7. Miatto, Alessio & Schandl, Heinz & Wiedenhofer, Dominik & Krausmann, Fridolin & Tanikawa, Hiroki, 2017. "Modeling material flows and stocks of the road network in the United States 1905–2015," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 168-178.
    8. Röck, Martin & Baldereschi, Elena & Verellen, Evelien & Passer, Alexander & Sala, Serenella & Allacker, Karen, 2021. "Environmental modelling of building stocks – An integrated review of life cycle-based assessment models to support EU policy making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    10. Alessio Miatto & Claudia Sartori & Martina Bianchi & Paolo Borin & Andrea Giordano & Shoshanna Saxe & T.E. Graedel, 2022. "Tracking the material cycle of Italian bricks with the aid of building information modeling," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 609-626, April.
    11. Weththasinghe, K.K. & Stephan, A. & Francis, V. & Tiwari, P., 2022. "Improving material selection in shopping centres through a parametric life cycle embodied flow and material cost analysis model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Volk, Rebekka & Müller, Richard & Reinhardt, Joachim & Schultmann, Frank, 2019. "An Integrated Material Flows, Stakeholders and Policies Approach to Identify and Exploit Regional Resource Potentials," Ecological Economics, Elsevier, vol. 161(C), pages 292-320.
    13. Grouiez, Pascal & Debref, Romain & Vivien, Franck-Dominique & Befort, Nicolas, 2023. "The complex relationships between non-food agriculture and the sustainable bioeconomy: The French case," Ecological Economics, Elsevier, vol. 214(C).
    14. Mohajan, Haradhan, 2021. "Cradle to Cradle is a Sustainable Economic Policy for the Better Future," MPRA Paper 111334, University Library of Munich, Germany, revised 10 Oct 2021.
    15. Remme, Roy P. & Meacham, Megan & Pellowe, Kara E. & Andersson, Erik & Guerry, Anne D. & Janke, Benjamin & Liu, Lingling & Lonsdorf, Eric & Li, Meng & Mao, Yuanyuan & Nootenboom, Christopher & Wu, Tong, 2024. "Aligning nature-based solutions with ecosystem services in the urban century," Ecosystem Services, Elsevier, vol. 66(C).
    16. Bruno Michel Roman Pais Seles & Janaina Mascarenhas & Ana Beatriz Lopes de Sousa Jabbour & Adriana Hoffman Trevisan, 2022. "Smoothing the circular economy transition: The role of resources and capabilities enablers," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1814-1837, May.
    17. Davide Bruno & Marinella Ferrara & Felice D’Alessandro & Alberto Mandelli, 2022. "The Role of Design in the CE Transition of the Furniture Industry—The Case of the Italian Company Cassina," Sustainability, MDPI, vol. 14(15), pages 1-20, July.
    18. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
    19. Francesca Gennari, 2023. "The transition towards a circular economy. A framework for SMEs," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 27(4), pages 1423-1457, December.
    20. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8840-:d:1159891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.