IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v162y2022ics1364032122003355.html
   My bibliography  Save this article

Flexible Ramp Products: A solution to enhance power system flexibility

Author

Listed:
  • Sreekumar, Sreenu
  • Yamujala, Sumanth
  • Sharma, Kailash Chand
  • Bhakar, Rohit
  • Simon, Sishaj P.
  • Rana, Ankur Singh

Abstract

Large scale integration of variable and uncertain Renewable Generation (RG) in power systems causes frequent load-generation imbalances. Systems require additional operational flexibility to ensure secure and reliable power system operations. Flexibility can be enhanced by increasing ramping availability from resources at generation and demand side. Flexible Ramp Products (FRPs) are implemented in mature power markets to ensure ramping availability from such sources. Accurate FRP design can effectively manage load-generation imbalances and ensure secure system operations. This has attracted quantum research attention in FRP related challenges. However, there is limited understanding of power system flexibility enhancement capability of FRPs, design components, modelling and implementation of FRPs in various electricity markets. A detailed study on this can support industry and academia to develop improved FRP designs. Also, this gives motivation to explore FRP availability from different sources. In this context, this paper provides a detailed review on FRPs, and problems and research challenges in existing FRP frameworks. Unique areas such as net load variability and uncertainty estimations in FRP modelling and FRP implementation in various power markets are extensively discussed. A case study is also conducted to demonstrate the advantages of implementing FRP. It concludes that FRP is a promising solution to manage frequent load-generation imbalances. However, there is a significant scope to improve existing FRP designs and their implementation. Also, FRP availability from different RG sources or RG mix needs to be adequately assessed to maximize the environmental advantages from them.

Suggested Citation

  • Sreekumar, Sreenu & Yamujala, Sumanth & Sharma, Kailash Chand & Bhakar, Rohit & Simon, Sishaj P. & Rana, Ankur Singh, 2022. "Flexible Ramp Products: A solution to enhance power system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
  • Handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003355
    DOI: 10.1016/j.rser.2022.112429
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122003355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Levin, Todd & Botterud, Audun, 2015. "Electricity market design for generator revenue sufficiency with increased variable generation," Energy Policy, Elsevier, vol. 87(C), pages 392-406.
    2. Marimoutou, Vêlayoudom & Soury, Manel, 2015. "Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model," Energy, Elsevier, vol. 88(C), pages 417-429.
    3. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model," Post-Print hal-01456125, HAL.
    4. Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
    5. Jiahua Hu & Fushuan Wen & Ke Wang & Yuchun Huang & Md. Abdus Salam, 2017. "Simultaneous Provision of Flexible Ramping Product and Demand Relief by Interruptible Loads Considering Economic Incentives," Energies, MDPI, vol. 11(1), pages 1-20, December.
    6. Yamujala, Sumanth & Kushwaha, Priyanka & Jain, Anjali & Bhakar, Rohit & Wu, Jianzhong & Mathur, Jyotirmay, 2021. "A stochastic multi-interval scheduling framework to quantify operational flexibility in low carbon power systems," Applied Energy, Elsevier, vol. 304(C).
    7. Vasilj, J. & Sarajcev, P. & Jakus, D., 2016. "Estimating future balancing power requirements in wind–PV power system," Renewable Energy, Elsevier, vol. 99(C), pages 369-378.
    8. Dam Kim & Hungyu Kwon & Mun-Kyeom Kim & Jong-Keun Park & Hyeongon Park, 2017. "Determining the Flexible Ramping Capacity of Electric Vehicles to Enhance Locational Flexibility," Energies, MDPI, vol. 10(12), pages 1-18, December.
    9. Alizadeh, M.I. & Parsa Moghaddam, M. & Amjady, N. & Siano, P. & Sheikh-El-Eslami, M.K., 2016. "Flexibility in future power systems with high renewable penetration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1186-1193.
    10. Marta Poncela & Arturs Purvins & Stamatios Chondrogiannis, 2018. "Pan-European Analysis on Power System Flexibility," Energies, MDPI, vol. 11(7), pages 1-19, July.
    11. Kaur, Amanpreet & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Net load forecasting for high renewable energy penetration grids," Energy, Elsevier, vol. 114(C), pages 1073-1084.
    12. Kumar, K. Prakash & Saravanan, B., 2017. "Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 348-358.
    13. Aien, Morteza & Hajebrahimi, Ali & Fotuhi-Firuzabad, Mahmud, 2016. "A comprehensive review on uncertainty modeling techniques in power system studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1077-1089.
    14. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    15. Cui, Mingjian & Zhang, Jie, 2018. "Estimating ramping requirements with solar-friendly flexible ramping product in multi-timescale power system operations," Applied Energy, Elsevier, vol. 225(C), pages 27-41.
    16. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," Working Papers halshs-01148746, HAL.
    17. Sun, Can & Bie, Zhaohong & Xie, Min & Jiang, Jiangfeng, 2016. "Fuzzy copula model for wind speed correlation and its application in wind curtailment evaluation," Renewable Energy, Elsevier, vol. 93(C), pages 68-76.
    18. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
    19. Wang, Qin & Wu, Hongyu & Florita, Anthony R. & Brancucci Martinez-Anido, Carlo & Hodge, Bri-Mathias, 2016. "The value of improved wind power forecasting: Grid flexibility quantification, ramp capability analysis, and impacts of electricity market operation timescales," Applied Energy, Elsevier, vol. 184(C), pages 696-713.
    20. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    21. He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
    22. Hagspiel, Simeon & Papaemannouil, Antonis & Schmid, Matthias & Andersson, Göran, 2012. "Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid," Applied Energy, Elsevier, vol. 96(C), pages 33-44.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deng, Xu & Lv, Tao & Meng, Xiangyun & Li, Cong & Hou, Xiaoran & Xu, Jie & Wang, Yinhao & Liu, Feng, 2024. "Assessing the carbon emission reduction effect of flexibility option for integrating variable renewable energy," Energy Economics, Elsevier, vol. 132(C).
    2. Ma, Huan & Sun, Qinghan & Chen, Qun & Zhao, Tian & He, Kelun, 2023. "Exergy-based flexibility cost indicator and spatio-temporal coordination principle of distributed multi-energy systems," Energy, Elsevier, vol. 267(C).
    3. Zhang, Shida & Ge, Shaoyun & Liu, Hong & Zhao, Bo & Ni, Chouwei & Hou, Guocheng & Wang, Chengshan, 2024. "Region-based flexibility quantification in distribution systems: An analytical approach considering spatio-temporal coupling," Applied Energy, Elsevier, vol. 355(C).
    4. Fang, Yuchen & Han, Jianpei & Du, Ershun & Jiang, Haiyang & Fang, Yujuan & Zhang, Ning & Kang, Chongqing, 2024. "Electric energy system planning considering chronological renewable generation variability and uncertainty," Applied Energy, Elsevier, vol. 373(C).
    5. Johnston, Barry & Al Kez, Dlzar & Foley, Aoife, 2024. "Assessing the effects of increasing offshore wind generation on marginal cost in the Irish electricity market," Applied Energy, Elsevier, vol. 374(C).
    6. Pan, Yushu & Ju, Liwei & Yang, Shenbo & Guo, Xinyu & Tan, Zhongfu, 2024. "A multi-objective robust optimal dispatch and cost allocation model for microgrids-shared hybrid energy storage system considering flexible ramping capacity," Applied Energy, Elsevier, vol. 369(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guizhou Liu & Xiao-Jing Cai & Shigeyuki Hamori, 2018. "Modeling the Dependence Structure of Share Prices among Three Chinese City Banks," JRFM, MDPI, vol. 11(4), pages 1-18, September.
    2. Yi Yao & Lixin Tian & Guangxi Cao, 2022. "The Information Spillover among the Carbon Market, Energy Market, and Stock Market: A Case Study of China’s Pilot Carbon Markets," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    3. Bassetti, Federico & De Giuli, Maria Elena & Nicolino, Enrica & Tarantola, Claudia, 2018. "Multivariate dependence analysis via tree copula models: An application to one-year forward energy contracts," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1107-1121.
    4. Chun Jiang & Yi-Fan Wu & Xiao-Lin Li & Xin Li, 2020. "Time-frequency Connectedness between Coal Market Prices, New Energy Stock Prices and CO 2 Emissions Trading Prices in China," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    5. Wang, Yudong & Guo, Zhuangyue, 2018. "The dynamic spillover between carbon and energy markets: New evidence," Energy, Elsevier, vol. 149(C), pages 24-33.
    6. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Quantile connectedness between energy, metal, and carbon markets," International Review of Financial Analysis, Elsevier, vol. 83(C).
    7. Tan, Xueping & Sirichand, Kavita & Vivian, Andrew & Wang, Xinyu, 2020. "How connected is the carbon market to energy and financial markets? A systematic analysis of spillovers and dynamics," Energy Economics, Elsevier, vol. 90(C).
    8. Jiemin Huang & Jiaoju Ge & Kai Chang & Yixiang Tian, 2020. "Dynamic hedging analysis of carbon emission trading yield in Shenzhen," Energy & Environment, , vol. 31(5), pages 870-885, August.
    9. Lin, Boqiang & Chen, Yufang, 2019. "Dynamic linkages and spillover effects between CET market, coal market and stock market of new energy companies: A case of Beijing CET market in China," Energy, Elsevier, vol. 172(C), pages 1198-1210.
    10. Xiaohua Song & Wen Zhang & Zeqi Ge & Siqi Huang & Yamin Huang & Sijia Xiong, 2022. "A Study of the Influencing Factors on the Carbon Emission Trading Price in China Based on the Improved Gray Relational Analysis Model," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    11. Liu, Jianing & Man, Yuanyuan & Dong, Xiuliang, 2023. "Tail dependence and risk spillover effects between China's carbon market and energy markets," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 553-567.
    12. Yang, Lu, 2022. "Idiosyncratic information spillover and connectedness network between the electricity and carbon markets in Europe," Journal of Commodity Markets, Elsevier, vol. 25(C).
    13. Zhou, Wei & Chen, Yan & Chen, Jin, 2022. "Risk spread in multiple energy markets: Extreme volatility spillover network analysis before and during the COVID-19 pandemic," Energy, Elsevier, vol. 256(C).
    14. Pilar Gargallo & Luis Lample & Jesús A. Miguel & Manuel Salvador, 2021. "Co-Movements between Eu Ets and the Energy Markets: A Var-Dcc-Garch Approach," Mathematics, MDPI, vol. 9(15), pages 1-36, July.
    15. Wu, Ruirui & Qin, Zhongfeng & Liu, Bing-Yue, 2022. "A systemic analysis of dynamic frequency spillovers among carbon emissions trading (CET), fossil energy and sectoral stock markets: Evidence from China," Energy, Elsevier, vol. 254(PA).
    16. Chang, Kai & Zhang, Chao, 2018. "Asymmetric dependence structure between emissions allowances and wholesale diesel/gasoline prices in emerging China's emissions trading scheme pilots," Energy, Elsevier, vol. 164(C), pages 124-136.
    17. Mehdi Mili & Jean‐Michel Sahut & Frédéric Teulon, 2020. "Shift‐contagion in energy markets and global crisis," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 725-736, August.
    18. Dai, Xingyu & Xiao, Ling & Wang, Qunwei & Dhesi, Gurjeet, 2021. "Multiscale interplay of higher-order moments between the carbon and energy markets during Phase III of the EU ETS," Energy Policy, Elsevier, vol. 156(C).
    19. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    20. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2017. "Can energy commodity futures add to the value of carbon assets?," Economic Modelling, Elsevier, vol. 62(C), pages 194-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:162:y:2022:i:c:s1364032122003355. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.