IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v203y2024ics1364032124005045.html
   My bibliography  Save this article

China's onshore wind energy potential in the context of climate change

Author

Listed:
  • Ji, Ling
  • Li, Jiahui
  • Sun, Lijian
  • Wang, Shuai
  • Guo, Junhong
  • Xie, Yulei
  • Wang, Xander

Abstract

China has great potential for developing renewable energy to achieve its carbon neutrality goals. Orderly development of renewable energy is essential to enhance resource utilization efficiency and ensure safety during the energy system transition process. This study presents a thorough assessment of China's onshore wind power potential by considering the land suitability, the potential and temporal characteristics, and the impacts of climate change. The high-resolution maps combining wind resources with land conditions and climate scenarios are produced to provide insights into system planning, grid integration, and flexibility management. The results show that the capacity potential of onshore wind energy in China is 9.6 TW with an annual generation of 12.6 PWh, and 83 % of total capacity has a cost advantage with the levelized cost lower than the 60 $/MWh threshold. By comprehensively considering geographical, economic, and social criteria, around 8.1 % of the national territorial area is identified as the most suitable area for wind power development, primarily in Inner Mongolia and Xinjiang. The annual electricity generation from these areas can fulfill nearly 69 % of the nation's electricity demand. Future climate change projections indicate a remarkable generalized drop by 18 % in the north and a slight increase by 7 % in the south under the RCP 8.5 scenario. However, significant changes in wind resources are mostly within restricted areas, suggesting that future climate change would like to bring negative but limited impacts on wind power production in China.

Suggested Citation

  • Ji, Ling & Li, Jiahui & Sun, Lijian & Wang, Shuai & Guo, Junhong & Xie, Yulei & Wang, Xander, 2024. "China's onshore wind energy potential in the context of climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:rensus:v:203:y:2024:i:c:s1364032124005045
    DOI: 10.1016/j.rser.2024.114778
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114778?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    2. Vanegas-Cantarero, María M. & Pennock, Shona & Bloise-Thomaz, Tianna & Jeffrey, Henry & Dickson, Matthew J., 2022. "Beyond LCOE: A multi-criteria evaluation framework for offshore renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Sailor, David J. & Smith, Michael & Hart, Melissa, 2008. "Climate change implications for wind power resources in the Northwest United States," Renewable Energy, Elsevier, vol. 33(11), pages 2393-2406.
    4. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    5. Shorabeh, Saman Nadizadeh & Firozjaei, Hamzeh Karimi & Firozjaei, Mohammad Karimi & Jelokhani-Niaraki, Mohammadreza & Homaee, Mehdi & Nematollahi, Omid, 2022. "The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    7. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    8. Erkka Rinne & Hannele Holttinen & Juha Kiviluoma & Simo Rissanen, 2018. "Effects of turbine technology and land use on wind power resource potential," Nature Energy, Nature, vol. 3(6), pages 494-500, June.
    9. Solaun, Kepa & Cerdá, Emilio, 2020. "Impacts of climate change on wind energy power – Four wind farms in Spain," Renewable Energy, Elsevier, vol. 145(C), pages 1306-1316.
    10. He, Gang & Kammen, Daniel M., 2014. "Where, when and how much wind is available? A provincial-scale wind resource assessment for China," Energy Policy, Elsevier, vol. 74(C), pages 116-122.
    11. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    12. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    13. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    14. Ferguson-Martin, Christopher J. & Hill, Stephen D., 2011. "Accounting for variation in wind deployment between Canadian provinces," Energy Policy, Elsevier, vol. 39(3), pages 1647-1658, March.
    15. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    16. Jain, Anjali & Das, Partha & Yamujala, Sumanth & Bhakar, Rohit & Mathur, Jyotirmay, 2020. "Resource potential and variability assessment of solar and wind energy in India," Energy, Elsevier, vol. 211(C).
    17. Enevoldsen, Peter & Permien, Finn-Hendrik & Bakhtaoui, Ines & Krauland, Anna-Katharina von & Jacobson, Mark Z. & Xydis, George & Sovacool, Benjamin K. & Valentine, Scott V. & Luecht, Daniel & Oxley, G, 2019. "How much wind power potential does europe have? Examining european wind power potential with an enhanced socio-technical atlas," Energy Policy, Elsevier, vol. 132(C), pages 1092-1100.
    18. Zhuo, Chen & Junhong, Guo & Wei, Li & Fei, Zhang & Chan, Xiao & Zhangrong, Pan, 2022. "Changes in wind energy potential over China using a regional climate model ensemble," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Lopez, Anthony & Mai, Trieu & Lantz, Eric & Harrison-Atlas, Dylan & Williams, Travis & Maclaurin, Galen, 2021. "Land use and turbine technology influences on wind potential in the United States," Energy, Elsevier, vol. 223(C).
    20. Grassi, Stefano & Junghans, Sven & Raubal, Martin, 2014. "Assessment of the wake effect on the energy production of onshore wind farms using GIS," Applied Energy, Elsevier, vol. 136(C), pages 827-837.
    21. Saraswat, S.K. & Digalwar, Abhijeet K. & Yadav, S.S. & Kumar, Gaurav, 2021. "MCDM and GIS based modelling technique for assessment of solar and wind farm locations in India," Renewable Energy, Elsevier, vol. 169(C), pages 865-884.
    22. Jangid, Jayant & Bera, Apurba Kumar & Joseph, Manoj & Singh, Vishal & Singh, T.P. & Pradhan, B.K. & Das, Sandipan, 2016. "Potential zones identification for harvesting wind energy resources in desert region of India – A multi criteria evaluation approach using remote sensing and GIS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1-10.
    23. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    24. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2017. "Potential impacts of climate change on European wind energy resource under the CMIP5 future climate projections," Renewable Energy, Elsevier, vol. 101(C), pages 29-40.
    25. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    26. Mattar, Cristian & Guzmán-Ibarra, María Cristina, 2017. "A techno-economic assessment of offshore wind energy in Chile," Energy, Elsevier, vol. 133(C), pages 191-205.
    27. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    28. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    29. Mentis, Dimitrios & Siyal, Shahid Hussain & Korkovelos, Alexandros & Howells, Mark, 2016. "A geospatial assessment of the techno-economic wind power potential in India using geographical restrictions," Renewable Energy, Elsevier, vol. 97(C), pages 77-88.
    30. Miao, Haozeyu & Xu, Haiming & Huang, Gang & Yang, Kai, 2023. "Evaluation and future projections of wind energy resources over the Northern Hemisphere in CMIP5 and CMIP6 models," Renewable Energy, Elsevier, vol. 211(C), pages 809-821.
    31. Nezhad, M. Majidi & Neshat, M. & Groppi, D. & Marzialetti, P. & Heydari, A. & Sylaios, G. & Garcia, D. Astiaso, 2021. "A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island," Renewable Energy, Elsevier, vol. 172(C), pages 667-679.
    32. Li, Yi & Wu, Xiao-Peng & Li, Qiu-Sheng & Tee, Kong Fah, 2018. "Assessment of onshore wind energy potential under different geographical climate conditions in China," Energy, Elsevier, vol. 152(C), pages 498-511.
    33. Fant, Charles & Gunturu, Bhaskar & Schlosser, Adam, 2016. "Characterizing wind power resource reliability in southern Africa," Applied Energy, Elsevier, vol. 161(C), pages 565-573.
    34. Chen, Liang, 2020. "Impacts of climate change on wind resources over North America based on NA-CORDEX," Renewable Energy, Elsevier, vol. 153(C), pages 1428-1438.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yang & Ma, Shaoxiu & Wang, Tao, 2019. "The impact of climate change on wind power abundance and variability in China," Energy, Elsevier, vol. 189(C).
    2. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    3. Liu, Fa & Sun, Fubao & Wang, Xunming, 2023. "Impact of turbine technology on wind energy potential and CO2 emission reduction under different wind resource conditions in China," Applied Energy, Elsevier, vol. 348(C).
    4. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    5. Hoen, Ben & Darlow, Ryan & Haac, Ryan & Rand, Joseph & Kaliski, Ken, 2023. "Effects of land-based wind turbine upsizing on community sound levels and power and energy density," Applied Energy, Elsevier, vol. 338(C).
    6. Martinez, A. & Iglesias, G., 2024. "Global wind energy resources decline under climate change," Energy, Elsevier, vol. 288(C).
    7. Dylan Harrison-Atlas & Galen Maclaurin & Eric Lantz, 2021. "Spatially-Explicit Prediction of Capacity Density Advances Geographic Characterization of Wind Power Technical Potential," Energies, MDPI, vol. 14(12), pages 1-28, June.
    8. Md Rabiul Islam & Md Rakibul Islam & Hosen M. Imran, 2022. "Assessing Wind Farm Site Suitability in Bangladesh: A GIS-AHP Approach," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    9. Dinçer, A.Ersin & Demir, A. & Yılmaz, K., 2023. "Enhancing wind turbine site selection through a novel wake penalty criterion," Energy, Elsevier, vol. 283(C).
    10. Asadi, Meysam & Ramezanzade, Mohsen & Pourhossein, Kazem, 2023. "A global evaluation model applied to wind power plant site selection," Applied Energy, Elsevier, vol. 336(C).
    11. Nagababu, Garlapati & Puppala, Harish & Pritam, Kocherlakota & Kantipudi, MVV Prasad, 2022. "Two-stage GIS-MCDM based algorithm to identify plausible regions at micro level to install wind farms: A case study of India," Energy, Elsevier, vol. 248(C).
    12. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    13. Mohammed Ifkirne & Houssam El Bouhi & Siham Acharki & Quoc Bao Pham & Abdelouahed Farah & Nguyen Thi Thuy Linh, 2022. "Multi-Criteria GIS-Based Analysis for Mapping Suitable Sites for Onshore Wind Farms in Southeast France," Land, MDPI, vol. 11(10), pages 1-26, October.
    14. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Characterization of wind resource in China from a new perspective," Energy, Elsevier, vol. 167(C), pages 994-1010.
    15. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    16. Geovanni Hernández Galvez & Daniel Chuck Liévano & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & José Rafael Dorrego Portela & Antonio Trujillo Narcía & Ricardo Saldaña Flores & Liliana P, 2022. "Harnessing Offshore Wind Energy along the Mexican Coastline in the Gulf of Mexico—An Exploratory Study including Sustainability Criteria," Sustainability, MDPI, vol. 14(10), pages 1-26, May.
    17. Nedaei, Mojtaba & Assareh, Ehsanolah & Walsh, Philip R., 2018. "A comprehensive evaluation of the wind resource characteristics to investigate the short term penetration of regional wind power based on different probability statistical methods," Renewable Energy, Elsevier, vol. 128(PA), pages 362-374.
    18. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    19. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    20. Guanying Chen & Zhenming Ji, 2024. "A Review of Solar and Wind Energy Resource Projection Based on the Earth System Model," Sustainability, MDPI, vol. 16(8), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:203:y:2024:i:c:s1364032124005045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.