IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v354y2024ipbs0306261923015829.html
   My bibliography  Save this article

Assessing long-term future climate change impacts on extreme low wind events for offshore wind turbines in the UK exclusive economic zone

Author

Listed:
  • Abdelaziz, Sara
  • Sparrow, Sarah N.
  • Hua, Weiqi
  • Wallom, David C.H.

Abstract

The impacts of climate change must be considered while planning offshore wind turbines (OWT), as it will result in more frequent and severe weather extremes. To ensure the dependability and affordability of wind energy, it is necessary to address extreme low wind speed events (LWE). This study aims to assess the reliability of wind power in the future by analyzing the rise of low wind durations and intensities in two future periods, 2021–2040 and 2061–2080, compared to the historical period of 1981–2000. The research compares the results for four main regions in the UK EEZ: East, South, West, and North. We examine different cut-in thresholds of 3 m/s, 4 m/s, 5 m/s, and 6 m/s in the UK exclusive economic zone (EEZ). The seasonal variations in LWE durations <4 m/s demonstrate that summer and autumn have an increase in most of the LWE durations occurrence in the 2061–2080 period in all regions compared to the historical period. Using five days running mean wind speed, the return time for 6 m/s cut-in wind speed shows that OWT will be vulnerable to frequent extreme LWE in most areas, with most sites experiencing a return period of up to 20 years. According to the return year region median and the Risk Ratio (RR) calculations, it is suggested that the South region exhibits a diminished risk of experiencing more frequent instances of wind speeds surpassing the cut-in threshold, specifically when utilizing cut-in thresholds of 5 m/s and 6 m/s, during the period spanning 2021–2040, as compared to the historical period. Furthermore, when employing 6-, 7-, and 8-day running means, the analysis reveals that the return period for wind speeds of 4 m/s in the Western region remains consistently recommended throughout the 2021–2040 period. In contrast, utilizing a 6-day time window for assessing the return period of 4 m/s wind speeds indicates a notable escalation in risk across all regions during the 2061–2080 period.

Suggested Citation

  • Abdelaziz, Sara & Sparrow, Sarah N. & Hua, Weiqi & Wallom, David C.H., 2024. "Assessing long-term future climate change impacts on extreme low wind events for offshore wind turbines in the UK exclusive economic zone," Applied Energy, Elsevier, vol. 354(PB).
  • Handle: RePEc:eee:appene:v:354:y:2024:i:pb:s0306261923015829
    DOI: 10.1016/j.apenergy.2023.122218
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122218?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    2. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2020. "On the suitability of offshore wind energy resource in the United States of America for the 21st century," Applied Energy, Elsevier, vol. 262(C).
    3. Cradden, L. & Kalogeri, C. & Barrios, I. Martinez & Galanis, G. & Ingram, D. & Kallos, G., 2016. "Multi-criteria site selection for offshore renewable energy platforms," Renewable Energy, Elsevier, vol. 87(P1), pages 791-806.
    4. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Rusu, Eugen, 2022. "Assessment of the wind power dynamics in the North Sea under climate change conditions," Renewable Energy, Elsevier, vol. 195(C), pages 466-475.
    6. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    7. Hugo Díaz & Carlos Guedes Soares, 2021. "A Multi-Criteria Approach to Evaluate Floating Offshore Wind Farms Siting in the Canary Islands (Spain)," Energies, MDPI, vol. 14(4), pages 1-18, February.
    8. David Abdul Konneh & Harun Or Rashid Howlader & Ryuto Shigenobu & Tomonobu Senjyu & Shantanu Chakraborty & Narayanan Krishna, 2019. "A Multi-Criteria Decision Maker for Grid-Connected Hybrid Renewable Energy Systems Selection Using Multi-Objective Particle Swarm Optimization," Sustainability, MDPI, vol. 11(4), pages 1-36, February.
    9. Costoya, X. & deCastro, M. & Santos, F. & Sousa, M.C. & Gómez-Gesteira, M., 2019. "Projections of wind energy resources in the Caribbean for the 21st century," Energy, Elsevier, vol. 178(C), pages 356-367.
    10. van der Wiel, K. & Stoop, L.P. & van Zuijlen, B.R.H. & Blackport, R. & van den Broek, M.A. & Selten, F.M., 2019. "Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 261-275.
    11. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Costoya, X. & deCastro, M. & Carvalho, D. & Feng, Z. & Gómez-Gesteira, M., 2021. "Climate change impacts on the future offshore wind energy resource in China," Renewable Energy, Elsevier, vol. 175(C), pages 731-747.
    13. Santos, F. & Gómez-Gesteira, M. & deCastro, M. & Añel, J.A. & Carvalho, D. & Costoya, Xurxo & Dias, J.M., 2018. "On the accuracy of CORDEX RCMs to project future winds over the Iberian Peninsula and surrounding ocean," Applied Energy, Elsevier, vol. 228(C), pages 289-300.
    14. Elsner, Paul, 2019. "Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 394-407.
    15. Hdidouan, Daniel & Staffell, Iain, 2017. "The impact of climate change on the levelised cost of wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 575-592.
    16. Sara C. Pryor & Rebecca J. Barthelmie, 2021. "A global assessment of extreme wind speeds for wind energy applications," Nature Energy, Nature, vol. 6(3), pages 268-276, March.
    17. Ohlendorf, Nils & Schill, Wolf-Peter, 2020. "Frequency and duration of low-wind-power events in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(8).
    18. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    19. Bento, Nuno & Fontes, Margarida, 2019. "Emergence of floating offshore wind energy: Technology and industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 66-82.
    20. Bahaj, AbuBakr S. & Mahdy, Mostafa & Alghamdi, Abdulsalam S. & Richards, David J., 2020. "New approach to determine the Importance Index for developing offshore wind energy potential sites: Supported by UK and Arabian Peninsula case studies," Renewable Energy, Elsevier, vol. 152(C), pages 441-457.
    21. Carreno-Madinabeitia, Sheila & Ibarra-Berastegi, Gabriel & Sáenz, Jon & Ulazia, Alain, 2021. "Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010)," Energy, Elsevier, vol. 226(C).
    22. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    23. Omar Bellprat & Virginie Guemas & Francisco Doblas-Reyes & Markus G. Donat, 2019. "Towards reliable extreme weather and climate event attribution," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    24. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    25. Schillings, Christoph & Wanderer, Thomas & Cameron, Lachlan & van der Wal, Jan Tjalling & Jacquemin, Jerome & Veum, Karina, 2012. "A decision support system for assessing offshore wind energy potential in the North Sea," Energy Policy, Elsevier, vol. 49(C), pages 541-551.
    26. Friederike E. L. Otto & Sjoukje Philip & Sarah Kew & Sihan Li & Andrew King & Heidi Cullen, 2018. "Attributing high-impact extreme events across timescales—a case study of four different types of events," Climatic Change, Springer, vol. 149(3), pages 399-412, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org, revised Jun 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Christopher & Schindler, Dirk, 2022. "A review of recent studies on wind resource projections under climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    3. Martinez, A. & Iglesias, G., 2024. "Global wind energy resources decline under climate change," Energy, Elsevier, vol. 288(C).
    4. Putuhena, Hugo & White, David & Gourvenec, Susan & Sturt, Fraser, 2023. "Finding space for offshore wind to support net zero: A methodology to assess spatial constraints and future scenarios, illustrated by a UK case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Costoya, X. & deCastro, M. & Carvalho, D. & Arguilé-Pérez, B. & Gómez-Gesteira, M., 2022. "Combining offshore wind and solar photovoltaic energy to stabilize energy supply under climate change scenarios: A case study on the western Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).
    7. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).
    8. Salvação, Nadia & Bentamy, Abderrahim & Guedes Soares, C., 2022. "Developing a new wind dataset by blending satellite data and WRF model wind predictions," Renewable Energy, Elsevier, vol. 198(C), pages 283-295.
    9. He, J.Y. & Li, Q.S. & Chan, P.W. & Zhao, X.D., 2023. "Assessment of future wind resources under climate change using a multi-model and multi-method ensemble approach," Applied Energy, Elsevier, vol. 329(C).
    10. Nagababu, Garlapati & Srinivas, Bhasuru Abhinaya & Kachhwaha, Surendra Singh & Puppala, Harish & Kumar, Surisetty V.V.Arun, 2023. "Can offshore wind energy help to attain carbon neutrality amid climate change? A GIS-MCDM based analysis to unravel the facts using CORDEX-SA," Renewable Energy, Elsevier, vol. 219(P1).
    11. Peters, Jared L. & Remmers, Tiny & Wheeler, Andrew J. & Murphy, Jimmy & Cummins, Valerie, 2020. "A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    13. Gil-García, Isabel C. & Ramos-Escudero, Adela & García-Cascales, M.S. & Dagher, Habib & Molina-García, A., 2022. "Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case," Renewable Energy, Elsevier, vol. 183(C), pages 130-147.
    14. Zhuo, Chen & Junhong, Guo & Wei, Li & Fei, Zhang & Chan, Xiao & Zhangrong, Pan, 2022. "Changes in wind energy potential over China using a regional climate model ensemble," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Vinhoza, Amanda & Schaeffer, Roberto, 2021. "Brazil's offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    16. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).
    17. Carvalho, D. & Rocha, A. & Costoya, X. & deCastro, M. & Gómez-Gesteira, M., 2021. "Wind energy resource over Europe under CMIP6 future climate projections: What changes from CMIP5 to CMIP6," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    19. Gunnell, Yanni & Mietton, Michel & Touré, Amadou Abdourhamane & Fujiki, Kenji, 2023. "Potential for wind farming in West Africa from an analysis of daily peak wind speeds and a review of low-level jet dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Costoya, X. & deCastro, M. & Carvalho, D. & Feng, Z. & Gómez-Gesteira, M., 2021. "Climate change impacts on the future offshore wind energy resource in China," Renewable Energy, Elsevier, vol. 175(C), pages 731-747.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:354:y:2024:i:pb:s0306261923015829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.