IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v155y2022ics1364032121011618.html
   My bibliography  Save this article

A review on efficiently integrated passive distillation systems for active solar steam evaporation

Author

Listed:
  • Arunkumar, T.
  • Lim, Hyeong Woo
  • Lee, Sang Joon

Abstract

Solar energy-driven desalination is one of sustainable means to produce reusable water. Recently, solar distiller formally known as a solar still (SS) has been commonly employed to get freshwater through evaporation and consequent condensation process. However, such passive systems are typically slow on the distillation process, because bulk heating requirement and other energy losses. To increase the fresh water productivity of the passive distillation systems, researchers have usually adopted concentrators, reflecting mirrors, evacuated tube collectors (ETC), energy absorbing-engineered nanoparticles and energy storage (sensible and latent heat) materials. In this manner, water in a distiller can obtain additional heat and speedy evaporation take place immediately. Thus, efficient integration of passive distillation is highly useful to achieve appreciable production rate of fresh water for human daily needs. In this aspect, many researchers continuously tried to develop new innovative technologies for effective solar desalination. The main objective of this assessment is to review the current integration strategies and consequences for improving the productivity of solar distillers. Here, the term integration comprises additional heat sources, including heat confinement to broadband nanoparticles (micro-integration), concentrators, reflecting-mirrors (macro-integration), latent heat storage (LHS), sensible heat storage (SHS), and wicking cloth-based absorbers. This review exclusively focused on the newest results in the year of 2020–2021. In addition, the challenges, limitations, and requirements for future prospects are discussed.

Suggested Citation

  • Arunkumar, T. & Lim, Hyeong Woo & Lee, Sang Joon, 2022. "A review on efficiently integrated passive distillation systems for active solar steam evaporation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011618
    DOI: 10.1016/j.rser.2021.111894
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121011618
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111894?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    2. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    3. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    4. Zhang, Lenan & Xu, Zhenyuan & Bhatia, Bikram & Li, Bangjun & Zhao, Lin & Wang, Evelyn N., 2020. "Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills," Applied Energy, Elsevier, vol. 266(C).
    5. Modi, Kalpesh V. & Nayi, Kuldeep H., 2020. "Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still," Renewable Energy, Elsevier, vol. 153(C), pages 1307-1319.
    6. Mohammad Alhuyi Nazari & Alireza Aslani & Roghayeh Ghasempour, 2018. "Analysis of Solar Farm Site Selection Based on TOPSIS Approach," International Journal of Social Ecology and Sustainable Development (IJSESD), IGI Global, vol. 9(1), pages 12-25, January.
    7. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    8. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Ali, Muhammad Tauha & Fath, Hassan E.S. & Armstrong, Peter R., 2011. "A comprehensive techno-economical review of indirect solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4187-4199.
    10. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    11. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    12. M. Mofijur & Teuku Meurah Indra Mahlia & Arridina Susan Silitonga & Hwai Chyuan Ong & Mahyar Silakhori & Muhammad Heikal Hasan & Nandy Putra & S.M. Ashrafur Rahman, 2019. "Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview," Energies, MDPI, vol. 12(16), pages 1-20, August.
    13. Mohammad Dehghani Madvar & Mohammad Alhuyi Nazari & Jamal Tabe Arjmand & Alireza Aslani & Roghayeh Ghasempour & Mohammad Hossein Ahmadi, 2018. "Analysis of stakeholder roles and the challenges of solar energy utilization in Iran," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(4), pages 438-451.
    14. Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Nadal-Bach, Joel & Bruno, Joan Carles & Farnós, Joan & Rovira, Miquel, 2021. "Solar stills and evaporators for the treatment of agro-industrial liquid wastes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    17. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    18. Arunkumar, T. & Ao, Yali & Luo, Zhifang & Zhang, Lin & Li, Jing & Denkenberger, D. & Wang, Jiaqiang, 2019. "Energy efficient materials for solar water distillation - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    20. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    21. Omara, Z.M. & Abdullah, A.S. & Kabeel, A.E. & Essa, F.A., 2017. "The cooling techniques of the solar stills' glass covers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 176-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arunkumar, T. & Parbat, Dibyangana & Lee, Sang Joon, 2024. "Comprehensive review of advanced desalination technologies for solar-powered all-day, all-weather freshwater harvesting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arunkumar, T. & Wang, Jiaqiang & Denkenberger, D., 2021. "Capillary flow-driven efficient nanomaterials for seawater desalination: Review of classifications, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    5. Shatar, Nursyahirah Mohd & Sabri, Mohd Faizul Mohd & Salleh, Mohd Faiz Mohd & Ani, Mohd Hanafi, 2023. "Investigation on the performance of solar still with thermoelectric cooling system for various cover material," Renewable Energy, Elsevier, vol. 202(C), pages 844-854.
    6. Muhammad Umair & Atsushi Akisawa & Yuki Ueda, 2013. "Optimum Settings for a Compound Parabolic Concentrator with Wings Providing Increased Duration of Effective Temperature for Solar-Driven Systems: A Case Study for Tokyo," Energies, MDPI, vol. 7(1), pages 1-15, December.
    7. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan—Solar energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2762-2780.
    8. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    9. Casanovas-Rubio, Maria del Mar & Armengou, Jaume, 2018. "Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 741-753.
    10. Khan, Hassan A. & Pervaiz, Saad, 2013. "Technological review on solar PV in Pakistan: Scope, practices and recommendations for optimized system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 147-154.
    11. Modi, Kalpesh V. & Nayi, Kuldeep H., 2020. "Efficacy of forced condensation and forced evaporation with thermal energy storage material on square pyramid solar still," Renewable Energy, Elsevier, vol. 153(C), pages 1307-1319.
    12. Abdelgaied, Mohamed & Kabeel, A.E., 2021. "Performance improvement of pyramid solar distillers using a novel combination of absorber surface coated with CuO nano black paint, reflective mirrors, and PCM with pin fins," Renewable Energy, Elsevier, vol. 180(C), pages 494-501.
    13. Mao, Chunliu & Li, Muran & Li, Na & Shan, Ming & Yang, Xudong, 2019. "Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting," Applied Energy, Elsevier, vol. 238(C), pages 54-68.
    14. Lin, W.M. & Chang, K.C. & Chung, K.M., 2015. "Payback period for residential solar water heaters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 901-906.
    15. Wei-Min Lin & Keh-Chin Chang & Kung-Ming Chung, 2019. "The Impact of Subsidy Programs for Solar Thermal Applications: A Case Study for a Remote Island," Energies, MDPI, vol. 12(20), pages 1-11, October.
    16. Endale, Alemnew, 2019. "Analysis of status, potential and economic significance of solar water heating system in Ethiopia," Renewable Energy, Elsevier, vol. 132(C), pages 1167-1176.
    17. Alexandru Şerban & Nicoleta Bărbuţă-Mişu & Nicoleta Ciucescu & Simona Paraschiv & Spiru Paraschiv, 2016. "Economic and Environmental Analysis of Investing in Solar Water Heating Systems," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    18. Devabhaktuni, Vijay & Alam, Mansoor & Shekara Sreenadh Reddy Depuru, Soma & Green, Robert C. & Nims, Douglas & Near, Craig, 2013. "Solar energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 555-564.
    19. Keh-Chin Chang & Wei-Min Lin & Kung-Ming Chung, 2015. "Sustainable Development for Solar Heating Systems in Taiwan," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    20. Pandey, Nagendra & Naresh, Y., 2024. "A comprehensive 4E (energy, exergy, economic, environmental) analysis of novel pyramid solar still coupled with pulsating heat pipe: An experimental study," Renewable Energy, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121011618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.