IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v238y2019icp54-68.html
   My bibliography  Save this article

Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting

Author

Listed:
  • Mao, Chunliu
  • Li, Muran
  • Li, Na
  • Shan, Ming
  • Yang, Xudong

Abstract

As one of the inexhaustible energy sources, solar energy as a means to provide space heating has been a public interest for decades. Many stand-alone solar thermal technologies have come into practice to replace the out-of-date systems. However, conventional solar thermal systems present two drawbacks: (1) unsteady solar sources can lead to insufficient heating in the winter, and (2) the solar collectors can become overheated in the summer. Therefore, this study proposes a conceptual design of an integrated solar harvesting unit that consists of the horizontal all-glass evacuated tube solar collectors and bottom mirror reflectors to overcome the above drawbacks to the largest extent possible. To accomplish this, a generic mathematical model of this design unit was developed, followed by the model validation process and optimal design analysis. For cities in the severe cold and cold climate zones of northern China, the bottom mirror reflectors can be regarded as solar energy collection boosters during the heating season, which can contribute solar energy ranging from 40% to 80% of the total collected solar energy depending on the inclined angles of the solar collectors and reflectors. In the summer, using such integrated unit with the solar collectors tilted at an obtuse angle, the absorbed solar radiation can be reduced by 20%, which is beneficial to overheating prevention.

Suggested Citation

  • Mao, Chunliu & Li, Muran & Li, Na & Shan, Ming & Yang, Xudong, 2019. "Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting," Applied Energy, Elsevier, vol. 238(C), pages 54-68.
  • Handle: RePEc:eee:appene:v:238:y:2019:i:c:p:54-68
    DOI: 10.1016/j.apenergy.2019.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peng Cheng & Jiuchang Wei & Yue Ge, 2017. "Who should be blamed? The attribution of responsibility for a city smog event in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 669-689, January.
    2. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    3. Liu, Gengyuan & Yang, Zhifeng & Chen, Bin & Zhang, Yan & Su, Meirong & Ulgiati, Sergio, 2016. "Prevention and control policy analysis for energy-related regional pollution management in China," Applied Energy, Elsevier, vol. 166(C), pages 292-300.
    4. Arata, A.A. & Geddes, R.W., 1986. "Combined collector-reflector systems," Energy, Elsevier, vol. 11(6), pages 621-630.
    5. Sterling, S.J. & Collins, M.R., 2012. "Feasibility analysis of an indirect heat pump assisted solar domestic hot water system," Applied Energy, Elsevier, vol. 93(C), pages 11-17.
    6. Zhijian Liu & Kejun Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-16, December.
    7. Majumdar, Rudrodip & Saha, Sandip K. & Singh, Suneet, 2018. "Evaluation of transient characteristics of medium temperature solar thermal systems utilizing thermal stratification," Applied Energy, Elsevier, vol. 224(C), pages 69-85.
    8. Raisul Islam, M. & Sumathy, K. & Ullah Khan, Samee, 2013. "Solar water heating systems and their market trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 1-25.
    9. Zhijian Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine," Energies, MDPI, vol. 8(8), pages 1-21, August.
    10. Shan, M. & Yu, T. & Yang, X., 2016. "Assessment of an integrated active solar and air-source heat pump water heating system operated within a passive house in a cold climate zone," Renewable Energy, Elsevier, vol. 87(P3), pages 1059-1066.
    11. Shah, L. J. & Furbo, S., 2004. "Vertical evacuated tubular-collectors utilizing solar radiation from all directions," Applied Energy, Elsevier, vol. 78(4), pages 371-395, August.
    12. Han, Jingyi & Mol, Arthur P.J. & Lu, Yonglong, 2010. "Solar water heaters in China: A new day dawning," Energy Policy, Elsevier, vol. 38(1), pages 383-391, January.
    13. Tanaka, Hiroshi, 2011. "Solar thermal collector augmented by flat plate booster reflector: Optimum inclination of collector and reflector," Applied Energy, Elsevier, vol. 88(4), pages 1395-1404, April.
    14. Tang, Runsheng & Gao, Wenfeng & Yu, Yamei & Chen, Hua, 2009. "Optimal tilt-angles of all-glass evacuated tube solar collectors," Energy, Elsevier, vol. 34(9), pages 1387-1395.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fathabadi, Hassan, 2020. "Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate," Renewable Energy, Elsevier, vol. 148(C), pages 1165-1173.
    2. Vishal Dabra & Avadhesh Yadav, 2022. "To optimize the flow distribution in concentric glass tube solar air collector with various configuration of manifolds," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10902-10923, September.
    3. Chen, Xiaomeng & Yang, Xudong & Li, Muran, 2022. "Combining horizontal evacuated tubes with booster mirror reflector to achieve seasonal reverse output: Technical and experimental investigation," Renewable Energy, Elsevier, vol. 188(C), pages 450-464.
    4. Li, Qiong & Gao, Wenfeng & Lin, Wenxian & Liu, Tao & Zhang, Yougang & Ding, Xiang & Huang, Xiaoqiao & Liu, Wuming, 2020. "Experiment and simulation study on convective heat transfer of all-glass evacuated tube solar collector," Renewable Energy, Elsevier, vol. 152(C), pages 1129-1139.
    5. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    6. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.
    7. Qiu, Guodong & Ma, Yuanyang & Song, Weiming & Cai, Weihua, 2021. "Comparative study on solar flat-plate collectors coupled with three types of reflectors not requiring solar tracking for space heating," Renewable Energy, Elsevier, vol. 169(C), pages 104-116.
    8. Bhusal, Yogesh & Hassanzadeh, Ali & Jiang, Lun & Winston, Roland, 2020. "Technical and economic analysis of a novel low-cost concentrated medium-temperature solar collector," Renewable Energy, Elsevier, vol. 146(C), pages 968-985.
    9. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    2. Alexandru Şerban & Nicoleta Bărbuţă-Mişu & Nicoleta Ciucescu & Simona Paraschiv & Spiru Paraschiv, 2016. "Economic and Environmental Analysis of Investing in Solar Water Heating Systems," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    3. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Shukla, Ruchi & Sumathy, K. & Erickson, Phillip & Gong, Jiawei, 2013. "Recent advances in the solar water heating systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 173-190.
    5. Wei, Haokun & Liu, Jian & Yang, Biao, 2014. "Cost-benefit comparison between Domestic Solar Water Heater (DSHW) and Building Integrated Photovoltaic (BIPV) systems for households in urban China," Applied Energy, Elsevier, vol. 126(C), pages 47-55.
    6. Gautam, Abhishek & Chamoli, Sunil & Kumar, Alok & Singh, Satyendra, 2017. "A review on technical improvements, economic feasibility and world scenario of solar water heating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 541-562.
    7. Ruth M. Saint & Céline Garnier & Francesco Pomponi & John Currie, 2018. "Thermal Performance through Heat Retention in Integrated Collector-Storage Solar Water Heaters: A Review," Energies, MDPI, vol. 11(6), pages 1-26, June.
    8. Kabeel, A.E. & Khalil, A. & Elsayed, S.S. & Alatyar, A.M., 2015. "Modified mathematical model for evaluating the performance of water-in-glass evacuated tube solar collector considering tube shading effect," Energy, Elsevier, vol. 89(C), pages 24-34.
    9. Yurtsev, Arif & Jenkins, Glenn P., 2016. "Cost-effectiveness analysis of alternative water heater systems operating with unreliable water supplies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 174-183.
    10. Muhammad Umair & Atsushi Akisawa & Yuki Ueda, 2013. "Optimum Settings for a Compound Parabolic Concentrator with Wings Providing Increased Duration of Effective Temperature for Solar-Driven Systems: A Case Study for Tokyo," Energies, MDPI, vol. 7(1), pages 1-15, December.
    11. Ge, T.S. & Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Chen, X.M. & Ma, T. & Wu, X.N. & Sun, X.L. & Chen, J.F., 2018. "Solar heating and cooling: Present and future development," Renewable Energy, Elsevier, vol. 126(C), pages 1126-1140.
    12. Pavlović, Zoran T. & Kostić, Ljiljana T., 2015. "Variation of reflected radiation from all reflectors of a flat plate solar collector during a year," Energy, Elsevier, vol. 80(C), pages 75-84.
    13. Mostafaeipour, Ali & Zarezade, Marjan & Goudarzi, Hossein & Rezaei-Shouroki, Mostafa & Qolipour, Mojtaba, 2017. "Investigating the factors on using the solar water heaters for dry arid regions: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 157-166.
    14. Poppi, Stefano & Sommerfeldt, Nelson & Bales, Chris & Madani, Hatef & Lundqvist, Per, 2018. "Techno-economic review of solar heat pump systems for residential heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 22-32.
    15. Esteban Zalamea-Leon & Edgar A. Barragán-Escandón & John Calle-Sigüencia & Mateo Astudillo-Flores & Diego Juela-Quintuña, 2021. "Residential Solar Thermal Performance Considering Self-Shading Incidence between Tubes in Evacuated Tube and Flat Plate Collectors," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    16. Casanovas-Rubio, Maria del Mar & Armengou, Jaume, 2018. "Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 741-753.
    17. Khan, Hassan A. & Pervaiz, Saad, 2013. "Technological review on solar PV in Pakistan: Scope, practices and recommendations for optimized system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 147-154.
    18. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    19. Zhijian Liu & Hao Li & Guoqing Cao, 2017. "Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning," IJERPH, MDPI, vol. 14(8), pages 1-9, July.
    20. Majumdar, Rudrodip & Saha, Sandip K., 2019. "Effect of varying extent of PCM capsule filling on thermal stratification performance of a storage tank," Energy, Elsevier, vol. 178(C), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:238:y:2019:i:c:p:54-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.