A procedure to predict solar receiver damage during transient conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2021.111905
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Laporte-Azcué, M. & Rodríguez-Sánchez, M.R. & González-Gómez, P.A. & Santana, D., 2021. "Assessment of the time resolution used to estimate the central solar receiver lifetime," Applied Energy, Elsevier, vol. 301(C).
- Rodriguez-Sanchez, M.R. & Sanchez-Gonzalez, A. & Santana, D., 2015. "Revised receiver efficiency of molten-salt power towers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1331-1339.
- Moreno-Tejera, S. & Silva-Pérez, M.A. & Ramírez-Santigosa, L. & Lillo-Bravo, I., 2018. "Evaluation of classification methods according to solar radiation features from the viewpoint of the production of parabolic trough CSP plants," Renewable Energy, Elsevier, vol. 121(C), pages 429-440.
- Crespi, Francesco & Toscani, Andrea & Zani, Paolo & Sánchez, David & Manzolini, Giampaolo, 2018. "Effect of passing clouds on the dynamic performance of a CSP tower receiver with molten salt heat storage," Applied Energy, Elsevier, vol. 229(C), pages 224-235.
- Sánchez-González, Alberto & Santana, Domingo, 2015. "Solar flux distribution on central receivers: A projection method from analytic function," Renewable Energy, Elsevier, vol. 74(C), pages 576-587.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Laporte-Azcué, M. & Rodríguez-Sánchez, M.R., 2024. "Thermal efficiency and endurance enhancement of tubular solar receivers using functionally graded materials," Applied Energy, Elsevier, vol. 360(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Rodríguez-Sánchez, M.R. & Leray, C. & Toutant, A. & Ferriere, A. & Olalde, G., 2019. "Development of a new method to estimate the incident solar flux on central receivers from deteriorated heliostats," Renewable Energy, Elsevier, vol. 130(C), pages 182-190.
- Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Cheng, Ze-Dong & He, Ya-Ling, 2022. "A comparison between lumped parameter method and computational fluid dynamics method for steady and transient optical-thermal characteristics of the molten salt receiver in solar power tower," Energy, Elsevier, vol. 245(C).
- Laporte-Azcué, M. & Rodríguez-Sánchez, M.R. & González-Gómez, P.A. & Santana, D., 2021. "Assessment of the time resolution used to estimate the central solar receiver lifetime," Applied Energy, Elsevier, vol. 301(C).
- Rodríguez-Sánchez, M.R. & Sánchez-González, A. & Santana, D., 2019. "Field-receiver model validation against Solar Two tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 43-52.
- Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
- Huang, Weidong & Yu, Liang, 2018. "Development of a new flux density function for a focusing heliostat," Energy, Elsevier, vol. 151(C), pages 358-375.
- García, Jesús & Barraza, Rodrigo & Soo Too, Yen Chean & Vásquez Padilla, Ricardo & Acosta, David & Estay, Danilo & Valdivia, Patricio, 2020. "Aiming clusters of heliostats over solar receivers for distributing heat flux using one variable per group," Renewable Energy, Elsevier, vol. 160(C), pages 584-596.
- Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
- Dasari, Hari Prasad & Desamsetti, Srinivas & Langodan, Sabique & Attada, Raju & Kunchala, Ravi Kumar & Viswanadhapalli, Yesubabu & Knio, Omar & Hoteit, Ibrahim, 2019. "High-resolution assessment of solar energy resources over the Arabian Peninsula," Applied Energy, Elsevier, vol. 248(C), pages 354-371.
- Huang, Weidong & Sun, Lulening, 2016. "Solar flux density calculation for a heliostat with an elliptical Gaussian distribution source," Applied Energy, Elsevier, vol. 182(C), pages 434-441.
- He, Caitou & Zhao, Hanli & He, Qi & Zhao, Yuhong & Feng, Jieqing, 2021. "Analytical radiative flux model via convolution integral and image plane mapping," Energy, Elsevier, vol. 222(C).
- Speetzen, N. & Richter, P., 2021. "Dynamic aiming strategy for central receiver systems," Renewable Energy, Elsevier, vol. 180(C), pages 55-67.
- Sánchez-González, Alberto & Rodríguez-Sánchez, María Reyes & Santana, Domingo, 2018. "Aiming factor to flatten the flux distribution on cylindrical receivers," Energy, Elsevier, vol. 153(C), pages 113-125.
- Messaoud Hazmoune & Benaoumeur Aour & Xavier Chesneau & Mohammed Debbache & Dana-Alexandra Ciupageanu & Gheorghe Lazaroiu & Mohamed Mondji Hadjiat & Abderrahmane Hamidat, 2020. "Numerical Analysis of a Solar Tower Receiver Novel Design," Sustainability, MDPI, vol. 12(17), pages 1-12, August.
- Chen, Jinli & Xiao, Gang & Xu, Haoran & Zhou, Xin & Yang, Jiamin & Ni, Mingjiang & Cen, Kefa, 2022. "Experiment and dynamic simulation of a solar tower collector system for power generation," Renewable Energy, Elsevier, vol. 196(C), pages 946-958.
- Jiabin Fang & Mumtaz A. Qaisrani & Nan Tu & Jinjia Wei & Zhenjie Wan & Yabin Jin & Muhammad Khalid & Naveed Ahmed, 2022. "Experiment and Numerical Analysis of Thermal Performance of a Billboard External Receiver," Energies, MDPI, vol. 15(6), pages 1-15, March.
- Rodriguez-Sanchez, M.R. & Sanchez-Gonzalez, A. & Santana, D., 2015. "Revised receiver efficiency of molten-salt power towers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1331-1339.
- Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
- Ashley, Thomas & Carrizosa, Emilio & Fernández-Cara, Enrique, 2017. "Optimisation of aiming strategies in Solar Power Tower plants," Energy, Elsevier, vol. 137(C), pages 285-291.
More about this item
Keywords
External central receiver; Creep-fatigue; Lifetime; Transient operation; Clustered days;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121011710. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.