Revised receiver efficiency of molten-salt power towers
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2015.08.004
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sánchez-González, Alberto & Santana, Domingo, 2015. "Solar flux distribution on central receivers: A projection method from analytic function," Renewable Energy, Elsevier, vol. 74(C), pages 576-587.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rodríguez-Sánchez, M.R. & Leray, C. & Toutant, A. & Ferriere, A. & Olalde, G., 2019. "Development of a new method to estimate the incident solar flux on central receivers from deteriorated heliostats," Renewable Energy, Elsevier, vol. 130(C), pages 182-190.
- Laporte-Azcué, M. & González-Gómez, P.A. & Santana, D., 2024. "Solar receiver endurance assessment under non-conventional operation modes," Renewable Energy, Elsevier, vol. 231(C).
- Ronny Gueguen & Benjamin Grange & Françoise Bataille & Samuel Mer & Gilles Flamant, 2020. "Shaping High Efficiency, High Temperature Cavity Tubular Solar Central Receivers," Energies, MDPI, vol. 13(18), pages 1-24, September.
- Laporte-Azcué, M. & Rodríguez-Sánchez, M.R. & González-Gómez, P.A. & Santana, D., 2021. "Assessment of the time resolution used to estimate the central solar receiver lifetime," Applied Energy, Elsevier, vol. 301(C).
- Gómez-Hernández, J. & González-Gómez, P.A. & Briongos, J.V. & Santana, D., 2018. "Influence of the steam generator on the exergetic and exergoeconomic analysis of solar tower plants," Energy, Elsevier, vol. 145(C), pages 313-328.
- Wang, Shuoshuo & Tuo, Yongxiao & Zhu, Xiaoli & Li, Fulai & Bai, Zhang & Gu, Yucheng, 2024. "Systematic assessment for an integrated hydrogen approach towards the cross-regional application considering solar thermochemical and methanol carrier11The short version of the paper was presented at ," Applied Energy, Elsevier, vol. 370(C).
- Rodríguez-Sánchez, M.R. & Sánchez-González, A. & Santana, D., 2019. "Field-receiver model validation against Solar Two tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 43-52.
- Laporte-Azcué, M. & González-Gómez, P.A. & Rodríguez-Sánchez, M.R. & Santana, D., 2022. "A procedure to predict solar receiver damage during transient conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Jiabin Fang & Mumtaz A. Qaisrani & Nan Tu & Jinjia Wei & Zhenjie Wan & Yabin Jin & Muhammad Khalid & Naveed Ahmed, 2022. "Experiment and Numerical Analysis of Thermal Performance of a Billboard External Receiver," Energies, MDPI, vol. 15(6), pages 1-15, March.
- Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
- Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
- Arrif, Toufik & Hassani, Samir & Guermoui, Mawloud & Sánchez-González, A. & A.Taylor, Robert & Belaid, Abdelfetah, 2022. "GA-GOA hybrid algorithm and comparative study of different metaheuristic population-based algorithms for solar tower heliostat field design," Renewable Energy, Elsevier, vol. 192(C), pages 745-758.
- Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
- Huang, Weidong & Yu, Liang, 2018. "Development of a new flux density function for a focusing heliostat," Energy, Elsevier, vol. 151(C), pages 358-375.
- Huang, Weidong & Yu, Liang & Hu, Peng, 2019. "An analytical solution for the solar flux density produced by a round focusing heliostat," Renewable Energy, Elsevier, vol. 134(C), pages 306-320.
- Zecan Tu & Daniela Piccioni Koch & Nenad Sarunac & Martin Frank & Junkui Mao, 2021. "Thermal Analysis of a Solar External Receiver Tube with a Novel Component of Guide Vanes," Energies, MDPI, vol. 14(8), pages 1-21, April.
- Conroy, Tim & Collins, Maurice N. & Fisher, James & Grimes, Ronan, 2018. "Thermal and mechanical analysis of a sodium-cooled solar receiver operating under a novel heliostat aiming point strategy," Applied Energy, Elsevier, vol. 230(C), pages 590-614.
- Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
- Zhou-Qiao Dai & Xu Ma & Xin-Yuan Tang & Ren-Zhong Zhang & Wei-Wei Yang, 2023. "Solar-Thermal-Chemical Integrated Design of a Cavity-Type Solar-Driven Methane Dry Reforming Reactor," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Huang, Weidong & Sun, Lulening, 2016. "Solar flux density calculation for a heliostat with an elliptical Gaussian distribution source," Applied Energy, Elsevier, vol. 182(C), pages 434-441.
- Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Wang, Qiliang & Li, Guiqiang & Cao, Jingyu & Hu, Mingke & Pei, Gang & Yang, Hongxing, 2022. "An analytical study on optimal spectral characters of solar absorbing coating and thermal performance potential of solar power tower," Renewable Energy, Elsevier, vol. 200(C), pages 1300-1315.
- Wang, Wen-Qi & Qiu, Yu & Li, Ming-Jia & He, Ya-Ling & Cheng, Ze-Dong, 2020. "Coupled optical and thermal performance of a fin-like molten salt receiver for the next-generation solar power tower," Applied Energy, Elsevier, vol. 272(C).
- He, Caitou & Zhao, Hanli & He, Qi & Zhao, Yuhong & Feng, Jieqing, 2021. "Analytical radiative flux model via convolution integral and image plane mapping," Energy, Elsevier, vol. 222(C).
- Speetzen, N. & Richter, P., 2021. "Dynamic aiming strategy for central receiver systems," Renewable Energy, Elsevier, vol. 180(C), pages 55-67.
- Serrano-Arrabal, J. & Serrano-Aguilera, J.J. & Sánchez-González, A., 2021. "Dual-tower CSP plants: optical assessment and optimization with a novel cone-tracing model," Renewable Energy, Elsevier, vol. 178(C), pages 429-442.
- García, Jesús & Soo Too, Yen Chean & Padilla, Ricardo Vasquez & Beath, Andrew & Kim, Jin-Soo & Sanjuan, Marco E., 2018. "Dynamic performance of an aiming control methodology for solar central receivers due to cloud disturbances," Renewable Energy, Elsevier, vol. 121(C), pages 355-367.
- Sánchez-González, Alberto & Rodríguez-Sánchez, María Reyes & Santana, Domingo, 2018. "Aiming factor to flatten the flux distribution on cylindrical receivers," Energy, Elsevier, vol. 153(C), pages 113-125.
- Messaoud Hazmoune & Benaoumeur Aour & Xavier Chesneau & Mohammed Debbache & Dana-Alexandra Ciupageanu & Gheorghe Lazaroiu & Mohamed Mondji Hadjiat & Abderrahmane Hamidat, 2020. "Numerical Analysis of a Solar Tower Receiver Novel Design," Sustainability, MDPI, vol. 12(17), pages 1-12, August.
More about this item
Keywords
Solar receiver; Molten salt; Thermal efficiency; Biot number; Thermal losses;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1331-1339. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.