IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v360y2024ics0306261924002253.html
   My bibliography  Save this article

Thermal efficiency and endurance enhancement of tubular solar receivers using functionally graded materials

Author

Listed:
  • Laporte-Azcué, M.
  • Rodríguez-Sánchez, M.R.

Abstract

Combinations of pure metals –Alloy 316H, Haynes 230, Inconel 625, Inconel 740H and Incoloy 800H– are analysed as functionally graded materials (FGM) to test their potential suitability for the solar central receiver tubes manufacturing, aiming to reduce their elastic stresses under operation to extend their lifetime, and to increase the solar power tower thermal efficiency. The proposed FGMs rely on a circumferential variation of their properties, with one material at the tube front side and the other at the rear one. The analytical investigation of the complete receiver shows lower elastic stresses at the tubes middle length when two materials with very disparate properties are combined since the temperature profile presents a peak at the front and gradually decreases towards the rear side. The mechanical properties are homogenized if the front material has a greater Young's modulus at a certain temperature and lower thermal expansion coefficient than the rear-side one. Yet, a compromise must be reached since the thermal gradients at the tube ends are almost negligible, and so greater elastic stresses are observed there when two very different materials are combined. Various FGMs tested manage to reduce the overall elastic stresses, with the Inconel 625-Incoloy 800H FGM showing the most promising results and a potential lifetime extension. Moreover, such stress reduction shows room for receiver thermal efficiency and heliostat field optical efficiency improvement: around 0.13% each in the case analysed since the proposed FGM can withstand the concentrated heat flux from more equatorial aiming strategies than the pure metals.

Suggested Citation

  • Laporte-Azcué, M. & Rodríguez-Sánchez, M.R., 2024. "Thermal efficiency and endurance enhancement of tubular solar receivers using functionally graded materials," Applied Energy, Elsevier, vol. 360(C).
  • Handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002253
    DOI: 10.1016/j.apenergy.2024.122842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924002253
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laporte-Azcué, M. & González-Gómez, P.A. & Rodríguez-Sánchez, M.R. & Santana, D., 2022. "A procedure to predict solar receiver damage during transient conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Wang, Shuang & Asselineau, Charles-Alexis & Fontalvo, Armando & Wang, Ye & Logie, William & Pye, John & Coventry, Joe, 2023. "Co-optimisation of the heliostat field and receiver for concentrated solar power plants," Applied Energy, Elsevier, vol. 348(C).
    3. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Rodríguez-Sánchez, M.R. & Laporte-Azcué, M. & Montoya, A. & Hernández-Jiménez, F., 2022. "Non-conventional tube shapes for lifetime extend of solar external receivers," Renewable Energy, Elsevier, vol. 186(C), pages 535-546.
    5. Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "The optimal share of PV and CSP for highly renewable power systems in the GCC region," Renewable Energy, Elsevier, vol. 179(C), pages 1990-2003.
    6. González-Gómez, P.A. & Gómez-Hernández, J. & Ruiz, C. & Santana, D., 2022. "Can solar tower plants withstand the operational flexibility of combined cycle plants?," Applied Energy, Elsevier, vol. 314(C).
    7. Hachicha, Ahmed Amine & Yousef, Bashria A.A. & Said, Zafar & Rodríguez, Ivette, 2019. "A review study on the modeling of high-temperature solar thermal collector systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 280-298.
    8. Bonk, Alexander & Braun, Markus & Sötz, Veronika A. & Bauer, Thomas, 2020. "Solar Salt – Pushing an old material for energy storage to a new limit," Applied Energy, Elsevier, vol. 262(C).
    9. Ferruzza, Davide & Kærn, Martin Ryhl & Haglind, Fredrik, 2019. "Design of header and coil steam generators for concentrating solar power applications accounting for low-cycle fatigue requirements," Applied Energy, Elsevier, vol. 236(C), pages 793-803.
    10. Du, Shen & Wang, Zexiao & Shen, Sheng, 2022. "Thermal and structural evaluation of composite solar receiver tubes for Gen3 concentrated solar power systems," Renewable Energy, Elsevier, vol. 189(C), pages 117-128.
    11. Zurita, Adriana & Mata-Torres, Carlos & Cardemil, José M. & Guédez, Rafael & Escobar, Rodrigo A., 2021. "Multi-objective optimal design of solar power plants with storage systems according to dispatch strategy," Energy, Elsevier, vol. 237(C).
    12. Sánchez-González, Alberto & Santana, Domingo, 2015. "Solar flux distribution on central receivers: A projection method from analytic function," Renewable Energy, Elsevier, vol. 74(C), pages 576-587.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gentile, Giancarlo & Picotti, Giovanni & Binotti, Marco & Cholette, Michael E. & Manzolini, Giampaolo, 2024. "A comprehensive methodology for the design of solar tower external receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Vengadesan, Elumalai & Gurusamy, Pathinettampadian & Senthil, Ramalingam, 2023. "Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector," Renewable Energy, Elsevier, vol. 216(C).
    3. Starke, Allan R. & Cardemil, José M. & Bonini, Vinicius R.B. & Escobar, Rodrigo & Castro-Quijada, Matías & Videla, Álvaro, 2024. "Assessing the performance of novel molten salt mixtures on CSP applications," Applied Energy, Elsevier, vol. 359(C).
    4. González-Gómez, P.A. & Laporte-Azcué, M. & Fernández-Torrijos, M. & Santana, D., 2022. "Design optimization and structural assessment of a header and coil steam generator for load-following solar tower plants," Renewable Energy, Elsevier, vol. 192(C), pages 456-471.
    5. Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
    6. Huang, Weidong & Yu, Liang, 2018. "Development of a new flux density function for a focusing heliostat," Energy, Elsevier, vol. 151(C), pages 358-375.
    7. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    8. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
    9. Huang, Weidong & Sun, Lulening, 2016. "Solar flux density calculation for a heliostat with an elliptical Gaussian distribution source," Applied Energy, Elsevier, vol. 182(C), pages 434-441.
    10. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. He, Caitou & Zhao, Hanli & He, Qi & Zhao, Yuhong & Feng, Jieqing, 2021. "Analytical radiative flux model via convolution integral and image plane mapping," Energy, Elsevier, vol. 222(C).
    12. Speetzen, N. & Richter, P., 2021. "Dynamic aiming strategy for central receiver systems," Renewable Energy, Elsevier, vol. 180(C), pages 55-67.
    13. Margherita Perrero & Davide Papurello, 2023. "Solar Disc Concentrator: Material Selection for the Receiver," Energies, MDPI, vol. 16(19), pages 1-11, September.
    14. Sánchez-González, Alberto & Rodríguez-Sánchez, María Reyes & Santana, Domingo, 2018. "Aiming factor to flatten the flux distribution on cylindrical receivers," Energy, Elsevier, vol. 153(C), pages 113-125.
    15. Messaoud Hazmoune & Benaoumeur Aour & Xavier Chesneau & Mohammed Debbache & Dana-Alexandra Ciupageanu & Gheorghe Lazaroiu & Mohamed Mondji Hadjiat & Abderrahmane Hamidat, 2020. "Numerical Analysis of a Solar Tower Receiver Novel Design," Sustainability, MDPI, vol. 12(17), pages 1-12, August.
    16. Singh, Manmeet & Sharma, Manoj Kumar & Bhattacharya, Jishnu, 2021. "Design methodology of a parabolic trough collector field for maximum annual energy yield," Renewable Energy, Elsevier, vol. 177(C), pages 229-241.
    17. Shinde, Tukaram U. & Dalvi, Vishwanath H. & Patil, Ramchandra G. & Mathpati, Channamallikarjun S. & Panse, Sudhir V. & Joshi, Jyeshtharaj B., 2022. "Thermal performance analysis of novel receiver for parabolic trough solar collector," Energy, Elsevier, vol. 254(PA).
    18. Shakibi, Hamid & Shokri, Afshar & Assareh, Ehsanolah & Yari, Mortaza & Lee, Moonyong, 2023. "Using machine learning approaches to model and optimize a combined solar/natural gas-based power and freshwater cogeneration system," Applied Energy, Elsevier, vol. 333(C).
    19. Chen, Jinli & Xiao, Gang & Xu, Haoran & Zhou, Xin & Yang, Jiamin & Ni, Mingjiang & Cen, Kefa, 2022. "Experiment and dynamic simulation of a solar tower collector system for power generation," Renewable Energy, Elsevier, vol. 196(C), pages 946-958.
    20. Rodríguez-Sánchez, M.R. & Leray, C. & Toutant, A. & Ferriere, A. & Olalde, G., 2019. "Development of a new method to estimate the incident solar flux on central receivers from deteriorated heliostats," Renewable Energy, Elsevier, vol. 130(C), pages 182-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:360:y:2024:i:c:s0306261924002253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.