IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2188-d772981.html
   My bibliography  Save this article

Experiment and Numerical Analysis of Thermal Performance of a Billboard External Receiver

Author

Listed:
  • Jiabin Fang

    (School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China)

  • Mumtaz A. Qaisrani

    (Department of Mechanical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan)

  • Nan Tu

    (School of Mechanical and Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, China)

  • Jinjia Wei

    (School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China)

  • Zhenjie Wan

    (School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yabin Jin

    (School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
    School of Energy and Architecture Engineering, Xi’an Aeronautical Institute, Xi’an 710077, China)

  • Muhammad Khalid

    (School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China)

  • Naveed Ahmed

    (U.S.-Pakistan Center for Advanced Studies in Energy, National University of Science and Technology, Islamabad 44000, Pakistan)

Abstract

The receiver serves as a critical component in tower-type concentrated solar power plants. Responsible for light-heat conversion, the efficiency of the receiver significantly affects the overall performance of the power plant. In the current study, the thermal performance of external receivers was investigated. An experiment was set up similarly using the solar simulator to experimentally investigate the heat losses of a billboard receiver. A billboard-type external receiver was designed, fabricated, and experimented with. A solar simulator having seven xenon lamps characteristics similar to the sunlight spectrum was used to obtain heat flux at the surface of the receiver. Convection losses in the head-on wind direction were evaluated, along with the radiation losses. The thermal efficiency of the billboard receiver calculated experimentally was around 83.9%. Numerical simulations were also carried out to compare the results against the experimental data. A variation of ±5% observed between both results validate the model proposed in the current study.

Suggested Citation

  • Jiabin Fang & Mumtaz A. Qaisrani & Nan Tu & Jinjia Wei & Zhenjie Wan & Yabin Jin & Muhammad Khalid & Naveed Ahmed, 2022. "Experiment and Numerical Analysis of Thermal Performance of a Billboard External Receiver," Energies, MDPI, vol. 15(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2188-:d:772981
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2188/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2188/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jin, Yabin & Fang, Jiabin & Wei, Jinjia & Qaisrani, Mumtaz A. & Wang, Xinhe, 2019. "Homogenization of solar flux distribution in a carbon aerosol entrapped cavity receiver," Energy, Elsevier, vol. 182(C), pages 21-36.
    2. Jin, Yabin & Fang, Jiabin & Wei, Jinjia & Qaisrani, Mumtaz A. & Wang, Xinhe, 2019. "Thermal performance evaluation of a cavity receiver based on particle's radiation properties during the day time," Renewable Energy, Elsevier, vol. 143(C), pages 622-636.
    3. Fang, J.B. & Tu, N. & Wei, J.J., 2013. "Numerical investigation of start-up performance of a solar cavity receiver," Renewable Energy, Elsevier, vol. 53(C), pages 35-42.
    4. Nan Tu & Jinjia Wei & Jiabin Fang, 2013. "Experimental and Numerical Study on the Thermal Performance of a Water/Steam Cavity Receiver," Energies, MDPI, vol. 6(3), pages 1-19, February.
    5. Rodriguez-Sanchez, M.R. & Sanchez-Gonzalez, A. & Santana, D., 2015. "Revised receiver efficiency of molten-salt power towers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1331-1339.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ni, Song & Pan, Chin & Hibiki, Takashi & Zhao, Jiyun, 2024. "Applications of nucleate boiling in renewable energy and thermal management and recent advances in modeling——a review," Energy, Elsevier, vol. 289(C).
    2. Zhang, Li & Fang, Jiabin & Wei, Jinjia & Yang, Guidong, 2017. "Numerical investigation on the thermal performance of molten salt cavity receivers with different structures," Applied Energy, Elsevier, vol. 204(C), pages 966-978.
    3. Zhang, Qiangqiang & Li, Xin & Wang, Zhifeng & Li, Zhi & Liu, Hong, 2018. "Function testing and failure analysis of control system for molten salt receiver system," Renewable Energy, Elsevier, vol. 115(C), pages 260-268.
    4. Loni, R. & Askari Asli-Ardeh, E. & Ghobadian, B. & Kasaeian, A.B. & Bellos, Evangelos, 2018. "Thermal performance comparison between Al2O3/oil and SiO2/oil nanofluids in cylindrical cavity receiver based on experimental study," Renewable Energy, Elsevier, vol. 129(PA), pages 652-665.
    5. Daabo, Ahmed M. & Mahmoud, Saad & Al-Dadah, Raya K. & Ahmad, Abdalqader, 2017. "Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application," Energy, Elsevier, vol. 119(C), pages 523-539.
    6. Conroy, Tim & Collins, Maurice N. & Grimes, Ronan, 2020. "A review of steady-state thermal and mechanical modelling on tubular solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Zhang, Yanping & Xiao, Hu & Zou, Chongzhe & Falcoz, Quentin & Neveu, Pierre, 2020. "Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe," Energy, Elsevier, vol. 193(C).
    8. Rodríguez-Sánchez, M.R. & Leray, C. & Toutant, A. & Ferriere, A. & Olalde, G., 2019. "Development of a new method to estimate the incident solar flux on central receivers from deteriorated heliostats," Renewable Energy, Elsevier, vol. 130(C), pages 182-190.
    9. Gómez-Hernández, J. & González-Gómez, P.A. & Briongos, J.V. & Santana, D., 2018. "Influence of the steam generator on the exergetic and exergoeconomic analysis of solar tower plants," Energy, Elsevier, vol. 145(C), pages 313-328.
    10. Laporte-Azcué, M. & González-Gómez, P.A. & Rodríguez-Sánchez, M.R. & Santana, D., 2022. "A procedure to predict solar receiver damage during transient conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Laporte-Azcué, M. & Rodríguez-Sánchez, M.R. & González-Gómez, P.A. & Santana, D., 2021. "Assessment of the time resolution used to estimate the central solar receiver lifetime," Applied Energy, Elsevier, vol. 301(C).
    12. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    13. Ronny Gueguen & Benjamin Grange & Françoise Bataille & Samuel Mer & Gilles Flamant, 2020. "Shaping High Efficiency, High Temperature Cavity Tubular Solar Central Receivers," Energies, MDPI, vol. 13(18), pages 1-24, September.
    14. Song, Jifeng & Yang, Genben & Wang, Haiyu & Niu, Yisen & Hou, Hongjuan & Su, Ying & Wang, Qian & Zou, Zubing, 2022. "Influence of sunshape and optical error on spillover of concentrated flux in solar thermal power tower plant," Energy, Elsevier, vol. 256(C).
    15. Rodríguez-Sánchez, M.R. & Sánchez-González, A. & Santana, D., 2019. "Field-receiver model validation against Solar Two tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 43-52.
    16. Rafique, Muhammad M. & Nathan, Graham & Saw, Woei, 2021. "A mathematical model to assess the influence of transients on a refractory-lined solar receiver," Renewable Energy, Elsevier, vol. 167(C), pages 217-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2188-:d:772981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.