New trends in bioprocesses for lignocellulosic biomass and CO2 utilization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2021.111620
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ana-Maria Cormos & Simion Dragan & Letitia Petrescu & Vlad Sandu & Calin-Cristian Cormos, 2020. "Techno-Economic and Environmental Evaluations of Decarbonized Fossil-Intensive Industrial Processes by Reactive Absorption & Adsorption CO 2 Capture Systems," Energies, MDPI, vol. 13(5), pages 1-16, March.
- Battista, Federico & Gomez Almendros, Mélanie & Rousset, Romain & Bouillon, Pierre-Antoine, 2019. "Enzymatic hydrolysis at high lignocellulosic content: Optimization of the mixing system geometry and of a fed-batch strategy to increase glucose concentration," Renewable Energy, Elsevier, vol. 131(C), pages 152-158.
- Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
- Inês C. Roberto & Rafael C. A. Castro & João Paulo A. Silva & Solange I. Mussatto, 2020. "Ethanol Production from High Solid Loading of Rice Straw by Simultaneous Saccharification and Fermentation in a Non-Conventional Reactor," Energies, MDPI, vol. 13(8), pages 1-17, April.
- Mesa, Leyanis & López, Nancy & Cara, Cristóbal & Castro, Eulogio & González, Erenio & Mussatto, Solange I., 2016. "Techno-economic evaluation of strategies based on two steps organosolv pretreatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production," Renewable Energy, Elsevier, vol. 86(C), pages 270-279.
- Kirsten M. Davis & Marjorie Rover & Robert C. Brown & Xianglan Bai & Zhiyou Wen & Laura R. Jarboe, 2016. "Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach," Energies, MDPI, vol. 9(10), pages 1-28, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dragone, Giuliano, 2022. "Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Lucas van der Maas & Jasper L. S. P. Driessen & Solange I. Mussatto, 2021. "Effects of Inhibitory Compounds Present in Lignocellulosic Biomass Hydrolysates on the Growth of Bacillus subtilis," Energies, MDPI, vol. 14(24), pages 1-12, December.
- Vinícius P. Shibukawa & Lucas Ramos & Mónica M. Cruz-Santos & Carina A. Prado & Fanny M. Jofre & Gabriel L. de Arruda & Silvio S. da Silva & Solange I. Mussatto & Júlio C. dos Santos, 2023. "Impact of Product Diversification on the Economic Sustainability of Second-Generation Ethanol Biorefineries: A Critical Review," Energies, MDPI, vol. 16(17), pages 1-30, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sharma, Sumit & Swain, Manas R. & Mishra, Abhishek & Mathur, Anshu S. & Gupta, Ravi P. & Puri, Suresh K. & Ramakumar, S.S.V. & Sharma, Ajay K., 2021. "High solid loading and multiple-fed simultaneous saccharification and co-fermentation (mf-SSCF) of rice straw for high titer ethanol production at low cost," Renewable Energy, Elsevier, vol. 179(C), pages 1915-1924.
- Tinôco, Daniel & Genier, Hugo Leonardo André & da Silveira, Wendel Batista, 2021. "Technology valuation of cellulosic ethanol production by Kluyveromyces marxianus CCT 7735 from sweet sorghum bagasse at elevated temperatures," Renewable Energy, Elsevier, vol. 173(C), pages 188-196.
- Santos, Bruna Stella De Freitas & Palacios-Bereche, Milagros Cecilia & Gallego, Antonio Garrido & Nebra, Silvia Azucena & Palacios-Bereche, Reynaldo, 2024. "Energy assessment and heat integration of biofuel production from bio-oil produced through fast pyrolysis of sugarcane straw, and its upgrading via hydrotreatment," Renewable Energy, Elsevier, vol. 232(C).
- Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
- Grzegorz Ludwik Golewski, 2020. "Energy Savings Associated with the Use of Fly Ash and Nanoadditives in the Cement Composition," Energies, MDPI, vol. 13(9), pages 1-20, May.
- Donoso, David & Bolonio, David & Ballesteros, Rosario & Lapuerta, Magín & Canoira, Laureano, 2022. "Hydrogenated orange oil: A waste derived drop-in biojet fuel," Renewable Energy, Elsevier, vol. 188(C), pages 1049-1058.
- Anna Partridge & Ekaterina Sermyagina & Esa Vakkilainen, 2020. "Impact of Pretreatment on Hydrothermally Carbonized Spruce," Energies, MDPI, vol. 13(11), pages 1-13, June.
- Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
- Zhao, Xuebing & Liu, Dehua, 2019. "Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining," Applied Energy, Elsevier, vol. 250(C), pages 229-244.
- Maria El Hage & Nicolas Louka & Sid-Ahmed Rezzoug & Thierry Maugard & Sophie Sablé & Mohamed Koubaa & Espérance Debs & Zoulikha Maache-Rezzoug, 2023. "Bioethanol Production from Woody Biomass: Recent Advances on the Effect of Pretreatments on the Bioconversion Process and Energy Yield Aspects," Energies, MDPI, vol. 16(13), pages 1-31, June.
- Elias, Andrew Milli & Longati, Andreza Aparecida & de Campos Giordano, Roberto & Furlan, Felipe Fernando, 2021. "Retro-techno-economic-environmental analysis improves the operation efficiency of 1G-2G bioethanol and bioelectricity facilities," Applied Energy, Elsevier, vol. 282(PA).
- Vera Marcantonio & Marcello De Falco & Enrico Bocci, 2022. "Non-Thermal Plasma Technology for CO 2 Conversion—An Overview of the Most Relevant Experimental Results and Kinetic Models," Energies, MDPI, vol. 15(20), pages 1-18, October.
- Yee Van Fan & Zorka Novak Pintarič & Jiří Jaromír Klemeš, 2020. "Emerging Tools for Energy System Design Increasing Economic and Environmental Sustainability," Energies, MDPI, vol. 13(16), pages 1-25, August.
- Mesa, Leyanis & Martínez, Yenisleidy & Celia de Armas, Ana & González, Erenio, 2020. "Ethanol production from sugarcane straw using different configurations of fermentation and techno-economical evaluation of the best schemes," Renewable Energy, Elsevier, vol. 156(C), pages 377-388.
- Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
- Qingling Yu & Jing Li & Xinhai Lu & Liyu Wang, 2023. "A Multi-Attribute Approach for Low-Carbon and Intensive Land Use of Jinan, China," Land, MDPI, vol. 12(6), pages 1-22, June.
- Deng, Zhichao & Liao, Qiang & Xia, Ao & Huang, Yun & Zhu, Xianqing & Qiu, Sheng & Zhu, Xun, 2022. "A bio-inspired flexible squeezing reactor for efficient enzymatic hydrolysis of lignocellulosic biomass for bioenergy production," Renewable Energy, Elsevier, vol. 191(C), pages 92-100.
- Pandey, Ajay Kumar & Kumar, Mohit & Kumari, Sonam & Gaur, Naseem A., 2022. "Integration of acid pre-treated paddy straw hydrolysate to molasses as a diluent enhances ethanol production using a robust Saccharomyces cerevisiae NGY10 strain," Renewable Energy, Elsevier, vol. 186(C), pages 790-801.
- Lü, Fan & Hua, Zhang & Shao, Liming & He, Pinjing, 2018. "Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances," Renewable Energy, Elsevier, vol. 124(C), pages 202-211.
More about this item
Keywords
Biomass conversion; Biorefinery; Carbon capture and utilization; CO2 microbial conversion; Enzymatic hydrolysis; Microbial co-cultivation; Process intensification; Simultaneous saccharification and fermentation; Sustainability;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:152:y:2021:i:c:s1364032121008960. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.