IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp1875-1883.html
   My bibliography  Save this article

Development of white brick fuel cell using rice husk ash agricultural waste for sustainable power generation: A novel approach

Author

Listed:
  • Magotra, Verjesh Kumar
  • Lee, S.J.
  • Inamdar, Akbar I.
  • Kang, T.W.
  • Walke, Pundalik D.
  • Hogan, Stephanie C.
  • Kim, D.Y.
  • Saratale, Ganesh D.
  • Saratale, Rijuta G.
  • Purkayastha, Anwesha
  • Jeon, H.C.

Abstract

The paper focuses on fabricating a white cement brick fuel cell (WC–BFC) using agricultural waste rice husk ash (RHA) for sustainable power generation. The samples from each material with three different compositions 0, 2, and 12% of RHA were analysed. First with (RHA + sand) and (RHA + sand + cement) for commercial brick technology. This study aims to replace the present ordinary old concrete brick with WC-BFC technology in the market. Steel is an essential material used in concrete for longs decades due to its strength and stability. Therefore, the brick cost depends on the type of electrode used for brick fabrication. However, Ammonium chloride 0.3 g/ml was used as fuel with regular intervals of time for WC-BFC. Where steel/graphite electrodes generate a higher power density of 2008.93 mW/m2 with 12% RHA concentration and later for long life electrodes, Graphite/Graphite is also optimised to see the effect on the power. These bricks themselves generate massive free power from their own. The proposed technology is eco-friendly, inexpensive, sustainable, and compatible with generating renewable energy for vast brick commercial applications. On one side work as a regular concrete brick, and another side free power supply. This technology itself is clean, safe, and sustainable.

Suggested Citation

  • Magotra, Verjesh Kumar & Lee, S.J. & Inamdar, Akbar I. & Kang, T.W. & Walke, Pundalik D. & Hogan, Stephanie C. & Kim, D.Y. & Saratale, Ganesh D. & Saratale, Rijuta G. & Purkayastha, Anwesha & Jeon, H., 2021. "Development of white brick fuel cell using rice husk ash agricultural waste for sustainable power generation: A novel approach," Renewable Energy, Elsevier, vol. 179(C), pages 1875-1883.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1875-1883
    DOI: 10.1016/j.renene.2021.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121011629
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bazargan, Alireza & Bazargan, Majid & McKay, Gordon, 2015. "Optimization of rice husk pretreatment for energy production," Renewable Energy, Elsevier, vol. 77(C), pages 512-520.
    2. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    3. Dario R. Shaw & Muhammad Ali & Krishna P. Katuri & Jeffrey A. Gralnick & Joachim Reimann & Rob Mesman & Laura van Niftrik & Mike S. M. Jetten & Pascal E. Saikaly, 2020. "Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    4. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    5. Xi, Xiang & Chung, D.D.L., 2020. "Deviceless cement-based structures as energy sources that enable structural self-powering," Applied Energy, Elsevier, vol. 280(C).
    6. Ankit Gautam & Rahul Batra & Nishant Singh, 2019. "A Study On Use Of Rice Husk Ash In Concrete," Engineering Heritage Journal (GWK), Zibeline International Publishing, vol. 3(1), pages 1-4, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Tiancheng & Lu, Jie & Hu, Xiaoyi & Liu, Wenjun & Chen, Jingxian, 2022. "Multi-dimensional performance analysis and efficiency evaluation of paper-based microfluidic fuel cell," Renewable Energy, Elsevier, vol. 187(C), pages 94-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinyoung Chun & Jin Hyung Lee, 2020. "Recent Progress on the Development of Engineered Silica Particles Derived from Rice Husk," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    2. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Hossein Beidaghy Dizaji & Thomas Zeng & Volker Lenz & Dirk Enke, 2022. "Valorization of Residues from Energy Conversion of Biomass for Advanced and Sustainable Material Applications," Sustainability, MDPI, vol. 14(9), pages 1-5, April.
    4. Steven, Soen & Restiawaty, Elvi & Bindar, Yazid, 2021. "Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Jenol, M.A. & Chu, P.H. & Ramle, I.K. & Joyce, L.J.W. & Lai-Yee, P. & Ibrahim, M.F. & Alitheen, N.B. & Osman, M.A. & Abd Gani, S. & Abd-Aziz, S., 2024. "Feasibility of agricultural biomass in Southeast Asia for enzymes production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    6. Jha, Gaurav & Soren, S., 2017. "Study on applicability of biomass in iron ore sintering process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 399-407.
    7. Massoud Sofi & Ylias Sabri & Zhiyuan Zhou & Priyan Mendis, 2019. "Transforming Municipal Solid Waste into Construction Materials," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    8. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    9. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.
    10. Daniel del Barrio Alvarez & Masahiro Sugiyama, 2020. "A SWOT Analysis of Utility-Scale Solar in Myanmar," Energies, MDPI, vol. 13(4), pages 1-17, February.
    11. Chi-Hung Tsai & Yun-Hwei Shen & Wen-Tien Tsai, 2023. "Effect of Alkaline Pretreatment on the Fuel Properties of Torrefied Biomass from Rice Husk," Energies, MDPI, vol. 16(2), pages 1-10, January.
    12. Almeshqab, Fatema & Ustun, Taha Selim, 2019. "Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 35-53.
    13. Samanta, Ritika & Chakraborty, Rajat, 2023. "Methyl levulinate synthesis from rice husk employing e-waste derived silica supported nano CuO–CdSO4 photocatalyst: Assessment of production environmental impacts, engine performance and emissions," Renewable Energy, Elsevier, vol. 210(C), pages 842-858.
    14. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    15. Han, Lanfang & Sun, Haoran & Sun, Ke & Yang, Yan & Fang, Liping & Xing, Baoshan, 2021. "Effect of Fe and Al ions on the production of biochar from agricultural biomass: Properties, stability and adsorption efficiency of biochar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Shaheen, Sabry M. & Antoniadis, Vasileios & Shahid, Muhammad & Yang, Yi & Abdelrahman, Hamada & Zhang, Tao & Hassan, Noha E.E. & Bibi, Irshad & Niazi, Nabeel Khan & Younis, Sherif A. & Almazroui, Mans, 2022. "Sustainable applications of rice feedstock in agro-environmental and construction sectors: A global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    17. Abdulrasheed, A.A. & Jalil, A.A. & Triwahyono, S. & Zaini, M.A.A. & Gambo, Y. & Ibrahim, M., 2018. "Surface modification of activated carbon for adsorption of SO2 and NOX: A review of existing and emerging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1067-1085.
    18. Wang, Chengxin & Bi, Haobo & Lin, Qizhao & Jiang, Xuedan & Jiang, Chunlong, 2020. "Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics," Renewable Energy, Elsevier, vol. 160(C), pages 1048-1066.
    19. Shen, Yafei & Zhang, Niyu & Zhang, Shu, 2020. "Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and porous carbons," Energy, Elsevier, vol. 190(C).
    20. Matei, Jéssica C. & Soares, Marlene & Bonato, Aline Cristine H. & de Freitas, Maria Paula A. & Helm, Cristiane V. & Maroldi, Wédisley V. & Magalhães, Washington L.E. & Haminiuk, Charles W.I. & Maciel,, 2020. "Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification," Renewable Energy, Elsevier, vol. 157(C), pages 987-997.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:1875-1883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.