IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v128y2017icp39-49.html
   My bibliography  Save this article

Thermodynamic evaluation of a rice husk fired integrated steam and hot air generation unit for rice parboiling

Author

Listed:
  • Kwofie, E.M.
  • Ngadi, M.
  • Sotocinal, S.

Abstract

This paper presents a simplified energy improvement system using agricultural waste for local rice processing. An integrated steam and hot air production unit using rice husk energy was evaluated thermodynamically. Besides characteristics of steam and hot air, temperature effectiveness of the fluid streams, energy and exergy flow within system components were also studied. Effect of input operating parameters on steam production and drying air temperature together with their correlation have been shown. Overall system energy and exergy efficiencies were found to be 47.81% and 10.93%, respectively. Although, the combustor showed the highest temperature, energy and exergy efficiencies, it was the main source of exergy destruction contributing more than 60%.

Suggested Citation

  • Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Thermodynamic evaluation of a rice husk fired integrated steam and hot air generation unit for rice parboiling," Energy, Elsevier, vol. 128(C), pages 39-49.
  • Handle: RePEc:eee:energy:v:128:y:2017:i:c:p:39-49
    DOI: 10.1016/j.energy.2017.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217305789
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saidur, R. & Ahamed, J.U. & Masjuki, H.H., 2010. "Energy, exergy and economic analysis of industrial boilers," Energy Policy, Elsevier, vol. 38(5), pages 2188-2197, May.
    2. Coskun, C. & Oktay, Z. & Ilten, N., 2009. "A new approach for simplifying the calculation of flue gas specific heat and specific exergy value depending on fuel composition," Energy, Elsevier, vol. 34(11), pages 1898-1902.
    3. Ayoub, Josef & Brunet, Eric, 1996. "Performance of large portable metal woodstoves for community kitchens," Renewable Energy, Elsevier, vol. 7(1), pages 71-80.
    4. Mohammed Ahiduzzaman & Abul K. M. Sadrul Islam, 2009. "Energy Utilization and Environmental Aspects of Rice Processing Industries in Bangladesh," Energies, MDPI, vol. 2(1), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven, Soen & Restiawaty, Elvi & Bindar, Yazid, 2021. "Routes for energy and bio-silica production from rice husk: A comprehensive review and emerging prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwofie, E.M. & Ngadi, M. & Sotocinal, S., 2017. "Energy efficiency and emission assessment of a continuous rice husk stove for rice parboiling," Energy, Elsevier, vol. 122(C), pages 340-349.
    2. Kwofie, E.M. & Ngadi, M., 2017. "A review of rice parboiling systems, energy supply, and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 465-472.
    3. Yao, Mingfa & Ma, Tianyu & Wang, Hu & Zheng, Zunqing & Liu, Haifeng & Zhang, Yan, 2018. "A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 162(C), pages 744-752.
    4. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    5. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.
    6. Xing, Zhou & Ping, Zhou & Xiqiang, Zhao & Zhanlong, Song & Wenlong, Wang & Jing, Sun & Yanpeng, Mao, 2021. "Applicability of municipal solid waste incineration (MSWI) system integrated with pre-drying or torrefaction for flue gas waste heat recovery," Energy, Elsevier, vol. 224(C).
    7. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    8. Hang Yin & Yingai Jin & Liang Li & Wenbo Lv, 2022. "Numerical Investigation on the Impact of Exergy Analysis and Structural Improvement in Power Plant Boiler through Co-Simulation," Energies, MDPI, vol. 15(21), pages 1-19, October.
    9. Mekhilef, S. & Saidur, R. & Safari, A., 2011. "A review on solar energy use in industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1777-1790, May.
    10. Sajad Koochakinia & Amir Ebrahimi-Moghadam & Mahdi Deymi-Dashtebayaz, 2022. "Techno-Environmental Analyses and Optimization of a Utility Boiler Based on Real Data," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    11. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    12. Behbahaninia, A. & Ramezani, S. & Lotfi Hejrandoost, M., 2017. "A loss method for exergy auditing of steam boilers," Energy, Elsevier, vol. 140(P1), pages 253-260.
    13. Tahir, Muhammad Faizan & Haoyong, Chen & Guangze, Han, 2022. "Evaluating individual heating alternatives in integrated energy system by employing energy and exergy analysis," Energy, Elsevier, vol. 249(C).
    14. Ahamed, J.U. & Madlool, N.A. & Saidur, R. & Shahinuddin, M.I. & Kamyar, A. & Masjuki, H.H., 2012. "Assessment of energy and exergy efficiencies of a grate clinker cooling system through the optimization of its operational parameters," Energy, Elsevier, vol. 46(1), pages 664-674.
    15. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    16. Wang, Yanhong & Li, Xiaoyu & Mao, Tianqin & Hu, Pengfei & Li, Xingcan & GuanWang,, 2022. "Mechanism modeling of optimal excess air coefficient for operating in coal fired boiler," Energy, Elsevier, vol. 261(PA).
    17. Kwofie, E.M. & Ngadi, M., 2016. "Sustainable energy supply for local rice parboiling in West Africa: The potential of rice husk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1409-1418.
    18. BoroumandJazi, G. & Rismanchi, B. & Saidur, R., 2013. "A review on exergy analysis of industrial sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 198-203.
    19. Berrueta, Víctor M. & Edwards, Rufus D. & Masera, Omar R., 2008. "Energy performance of wood-burning cookstoves in Michoacan, Mexico," Renewable Energy, Elsevier, vol. 33(5), pages 859-870.
    20. Ahiduzzaman, Md. & Islam, A.K.M. Sadrul, 2011. "Greenhouse gas emission and renewable energy sources for sustainable development in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4659-4666.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:128:y:2017:i:c:p:39-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.