IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p1955-d1042671.html
   My bibliography  Save this article

Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller

Author

Listed:
  • Jianwei Sun

    (Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan)

  • Koichi Yonezawa

    (Central Research Institute of Electrical Power Industry, Abiko 270-1194, Japan
    Center for Aerial Intelligent Vehicles, Chiba University, Chiba 263-8522, Japan)

  • Eiji Shima

    (Japan Aerospace Exploration Agency, Tokyo 181-0015, Japan)

  • Hao Liu

    (Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
    Center for Aerial Intelligent Vehicles, Chiba University, Chiba 263-8522, Japan)

Abstract

Aeroacoustic noise in multiple rotor drones has been increasingly recognized as a crucial issue, while noise reduction is normally associated with a trade-off between aerodynamic performance and sound suppression as well as sound quality improvement. Here, we propose an integrated methodology to evaluate both aeroacoustics and psychoacoustics of a single propeller. For a loop-type propeller, an experimental investigation was conducted in association with its aerodynamic and acoustic characteristics via a hover stand test in an anechoic chamber; the psychoacoustic performance was then examined with psychoacoustic annoyance models to evaluate five psychoacoustic metrics comprising loudness, fluctuation strength, roughness, sharpness, and tonality. A comparison of the figure of merit (FM), the overall sound pressure level (OASPL) and psychoacoustic metrics was undertaken among a two-blade propeller, a four-blade propeller, the loop-type propeller, a wide chord loop-type propeller, and a DJI Phantom III propeller, indicating that the loop-type propeller enables a remarkable reduction in OASPL and a noticeable improvement in sound quality while achieving comparable aerodynamic performance. Furthermore, the psychoacoustic analysis demonstrates that the loop-type propeller can improve the psychological response to various noises in terms of the higher-level broadband and lower-level tonal noise components. It is thus verified that the integrated evaluation methodology of aeroacoustics and psychoacoustics can be a useful tool in the design of low-noise propellers in association with multirotor drones.

Suggested Citation

  • Jianwei Sun & Koichi Yonezawa & Eiji Shima & Hao Liu, 2023. "Integrated Evaluation of the Aeroacoustics and Psychoacoustics of a Single Propeller," IJERPH, MDPI, vol. 20(3), pages 1-23, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1955-:d:1042671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/1955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/1955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dario Floreano & Robert J. Wood, 2015. "Science, technology and the future of small autonomous drones," Nature, Nature, vol. 521(7553), pages 460-466, May.
    2. C. T. Justine Hui & Michael J. Kingan & Yusuke Hioka & Gian Schmid & George Dodd & Kim N. Dirks & Shaun Edlin & Sean Mascarenhas & Young-Min Shim, 2021. "Quantification of the Psychoacoustic Effect of Noise from Small Unmanned Aerial Vehicles," IJERPH, MDPI, vol. 18(17), pages 1-27, August.
    3. Antonio J. Torija & Charlotte Clark, 2021. "A Psychoacoustic Approach to Building Knowledge about Human Response to Noise of Unmanned Aerial Vehicles," IJERPH, MDPI, vol. 18(2), pages 1-16, January.
    4. Merino-Martínez, Roberto & Pieren, Reto & Schäffer, Beat, 2021. "Holistic approach to wind turbine noise: From blade trailing-edge modifications to annoyance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Beat Schäffer & Reto Pieren & Kurt Heutschi & Jean Marc Wunderli & Stefan Becker, 2021. "Drone Noise Emission Characteristics and Noise Effects on Humans—A Systematic Review," IJERPH, MDPI, vol. 18(11), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio J. Torija & Rory K. Nicholls, 2022. "Investigation of Metrics for Assessing Human Response to Drone Noise," IJERPH, MDPI, vol. 19(6), pages 1-19, March.
    2. Carlos Ramos-Romero & Nathan Green & Seth Roberts & Charlotte Clark & Antonio J. Torija, 2022. "Requirements for Drone Operations to Minimise Community Noise Impact," IJERPH, MDPI, vol. 19(15), pages 1-16, July.
    3. Wang, Ning & Mutzner, Nico & Blanchet, Karl, 2023. "Societal acceptance of urban drones: A scoping literature review," Technology in Society, Elsevier, vol. 75(C).
    4. Ilona Kulikovskikh & Sergej Prokhorov & Tomislav Lipić & Tarzan Legović & Tomislav Šmuc, 2019. "BioGD: Bio-inspired robust gradient descent," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-19, July.
    5. Stöcker, Claudia & Bennett, Rohan & Koeva, Mila & Nex, Francesco & Zevenbergen, Jaap, 2022. "Scaling up UAVs for land administration: Towards the plateau of productivity," Land Use Policy, Elsevier, vol. 114(C).
    6. Srinivas, Sharan & Ramachandiran, Surya & Rajendran, Suchithra, 2022. "Autonomous robot-driven deliveries: A review of recent developments and future directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    7. Zenan Shen & Shaoquan Liu & Wei Zhu & Daoyuan Ren & Qiang Xu & Yu Feng, 2024. "A Review on Key Technologies and Developments of Hydrogen Fuel Cell Multi-Rotor Drones," Energies, MDPI, vol. 17(16), pages 1-36, August.
    8. Kloster, Konstantin & Moeini, Mahdi & Vigo, Daniele & Wendt, Oliver, 2023. "The multiple traveling salesman problem in presence of drone- and robot-supported packet stations," European Journal of Operational Research, Elsevier, vol. 305(2), pages 630-643.
    9. Kähler, Svantje T. & Abben, Thomas & Luna-Rodriguez, Aquiles & Tomat, Miriam & Jacobsen, Thomas, 2022. "An assessment of the acceptance and aesthetics of UAVs and helicopters through an experiment and a survey," Technology in Society, Elsevier, vol. 71(C).
    10. Zhu, Xun & Pasch, Timothy J. & Bergstrom, Aaron, 2020. "Understanding the structure of risk belief systems concerning drone delivery: A network analysis," Technology in Society, Elsevier, vol. 62(C).
    11. Yandong Xiao & Xiaokang Lei & Zhicheng Zheng & Yalun Xiang & Yang-Yu Liu & Xingguang Peng, 2024. "Perception of motion salience shapes the emergence of collective motions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    12. Raj Bridgelall, 2022. "Reducing Risks by Transporting Dangerous Cargo in Drones," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    13. Kai Fukami & Kunihiko Taira, 2023. "Grasping extreme aerodynamics on a low-dimensional manifold," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Gonzalo Fernandez-Sanchez & Alvaro Fernandez-Heredia, 2018. "Strategic Thinking for Sustainability: A Review of 10 Strategies for Sustainable Mobility by Bus for Cities," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    15. Ali Akbar Firoozi & Farzad Hejazi & Ali Asghar Firoozi, 2024. "Advancing Wind Energy Efficiency: A Systematic Review of Aerodynamic Optimization in Wind Turbine Blade Design," Energies, MDPI, vol. 17(12), pages 1-30, June.
    16. Hongbo He & Xiaohan Liao & Huping Ye & Chenchen Xu & Huanyin Yue, 2023. "Data-Driven Insights into Population Exposure Risks: Towards Sustainable and Safe Urban Airspace Utilization by Unmanned Aerial Systems," Sustainability, MDPI, vol. 15(16), pages 1-20, August.
    17. Schniederjans, Dara G. & Curado, Carla & Khalajhedayati, Mehrnaz, 2020. "Supply chain digitisation trends: An integration of knowledge management," International Journal of Production Economics, Elsevier, vol. 220(C).
    18. Christian Wankmüller & Christian Truden & Christopher Korzen & Philipp Hungerländer & Ewald Kolesnik & Gerald Reiner, 2020. "Optimal allocation of defibrillator drones in mountainous regions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(3), pages 785-814, September.
    19. Ghada Talat Alhothali & Felix T. Mavondo & Bader A. Alyoubi & Haneen Algethami, 2024. "Consumer Acceptance of Drones for Last-Mile Delivery in Jeddah, Saudi Arabia," Sustainability, MDPI, vol. 16(13), pages 1-21, June.
    20. David Reiser & Galibjon M. Sharipov & Gero Hubel & Volker Nannen & Hans W. Griepentrog, 2023. "Development and Experimental Validation of an Agricultural Robotic Platform with High Traction and Low Compaction," Agriculture, MDPI, vol. 13(8), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1955-:d:1042671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.