IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v64y2016icp618-633.html
   My bibliography  Save this article

A concept review of power line communication in building energy management systems for the small to medium sized non-domestic built environment

Author

Listed:
  • Whiffen, T.R.
  • Naylor, S.
  • Hill, J.
  • Smith, L.
  • Callan, P.A.
  • Gillott, M.
  • Wood, C.J.
  • Riffat, S.B.

Abstract

To date, building energy management systems (BEMS) have been well established in the large scale non-domestic field as an energy saving technology, contributing towards sustainable future cities. They utilise complex control interfaces, with control signals passed through purpose built communication wiring. Estimated end-use energy savings, due to BEMS addition, can reach up to 50%, with associated financial savings for building users. The intelligent control, featured in BEMS, enables buildings to adapt; optimising operation based on up to date weather forecasts. Despite the positive savings for future sustainable cities, the additional wiring required and complex control interfaces have inhibited wide scale up take for small and medium sized commercial buildings. Retrofit installation is often time consuming, whilst efficient operation requires additional training for users. BEMS, based on wireless communication technology, are limited by radio-wave reception and therefore suffer in heavyweight constructions and larger premises (greater than 1000sqm). Following review of available technologies, this paper investigates a novel strategy utilising power-line communication (PLC) for BEMS communication, for versatile applications in the small to medium sized non-domestic (SMSND) premises that make up future sustainable cities. The PLC strategy intends to send BEMS control signals via the established electrical wiring network. Before implementation of this concept, further work is required to overcome the more challenging aspects of PLC technology.

Suggested Citation

  • Whiffen, T.R. & Naylor, S. & Hill, J. & Smith, L. & Callan, P.A. & Gillott, M. & Wood, C.J. & Riffat, S.B., 2016. "A concept review of power line communication in building energy management systems for the small to medium sized non-domestic built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 618-633.
  • Handle: RePEc:eee:rensus:v:64:y:2016:i:c:p:618-633
    DOI: 10.1016/j.rser.2016.06.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211630301X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.06.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    2. Dounis, A. I. & Bruant, M. & Guarracino, G. & Michel, P. & Santamouris, M., 1996. "Indoor air-quality control by a fuzzy-reasoning machine in naturally ventilated buildings," Applied Energy, Elsevier, vol. 54(1), pages 11-28, May.
    3. Shaikh, Pervez Hameed & Nor, Nursyarizal Bin Mohd & Nallagownden, Perumal & Elamvazuthi, Irraivan & Ibrahim, Taib, 2014. "A review on optimized control systems for building energy and comfort management of smart sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 409-429.
    4. Dounis, A. I. & Manolakis, D. E., 2001. "Design of a fuzzy system for living space thermal-comfort regulation," Applied Energy, Elsevier, vol. 69(2), pages 119-144, June.
    5. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristino, T.M. & Lotufo, F.A. & Delinchant, B. & Wurtz, F. & Faria Neto, A., 2021. "A comprehensive review of obstacles and drivers to building energy-saving technologies and their association with research themes, types of buildings, and geographic regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Hurtado, Saúl Rick Fernández & Triana, Diego Castillo & Martínez, Luz Ángela Martínez, 2018. "Clúster virtual: nueva alternativa a la competitividad eficaz en las empresas," Revista Tendencias, Universidad de Narino, vol. 19(1), pages 164-186, January.
    3. Reindl, K. & Palm, J., 2021. "Installing PV: Barriers and enablers experienced by non-residential property owners," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    5. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.
    6. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmail Mahmoudi Saber & Issa Chaer & Aaron Gillich & Bukola Grace Ekpeti, 2021. "Review of Intelligent Control Systems for Natural Ventilation as Passive Cooling Strategy for UK Buildings and Similar Climatic Conditions," Energies, MDPI, vol. 14(15), pages 1-16, July.
    2. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    3. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    4. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    5. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    6. Wang, Zhu & Wang, Lingfeng & Dounis, Anastasios I. & Yang, Rui, 2012. "Multi-agent control system with information fusion based comfort model for smart buildings," Applied Energy, Elsevier, vol. 99(C), pages 247-254.
    7. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    8. Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2016. "Design and development of advanced fuzzy logic controllers in smart buildings for institutional buildings in subtropical Queensland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 738-744.
    9. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
    10. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    11. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    12. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    13. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    14. Halhoul Merabet, Ghezlane & Essaaidi, Mohamed & Ben Haddou, Mohamed & Qolomany, Basheer & Qadir, Junaid & Anan, Muhammad & Al-Fuqaha, Ala & Abid, Mohamed Riduan & Benhaddou, Driss, 2021. "Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    15. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    16. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    17. Baloch, Ashfaque Ahmed & Shaikh, Pervez Hameed & Shaikh, Faheemullah & Leghari, Zohaib Hussain & Mirjat, Nayyar Hussain & Uqaili, Muhammad Aslam, 2018. "Simulation tools application for artificial lighting in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3007-3026.
    18. Israr Ullah & DoHyeun Kim, 2017. "An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes," Energies, MDPI, vol. 10(11), pages 1-21, November.
    19. Park, June Young & Nagy, Zoltan, 2018. "Comprehensive analysis of the relationship between thermal comfort and building control research - A data-driven literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2664-2679.
    20. Baldi, Simone & Michailidis, Iakovos & Ravanis, Christos & Kosmatopoulos, Elias B., 2015. "Model-based and model-free “plug-and-play” building energy efficient control," Applied Energy, Elsevier, vol. 154(C), pages 829-841.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:64:y:2016:i:c:p:618-633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.