IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v34y2009i1p58-66.html
   My bibliography  Save this article

Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm

Author

Listed:
  • Mossolly, M.
  • Ghali, K.
  • Ghaddar, N.

Abstract

This paper examines optimal control strategies of variable air volume air conditioning system. The control strategies included a base control strategy of fixed temperature set point and two advanced strategies for insuring comfort and indoor air quality (IAQ). The first advanced control adjusts the fresh air supply rate and the supply air temperature to maintain the temperature set point in each zone while assuring indoor air quality. The second strategy controls the fresh air rate and the supply air temperature to maintain an acceptable thermal comfort and IAQ in each zone. The optimization problem for each control strategy is formulated based on the cost of energy consumption and constrained by system and thermal space transient models. The optimization problem is solved using genetic algorithm. The optimization scheme/model is applied to a case study for a building floor in Beirut weather. The thermal space and system component models were validated for the base strategy using Visual DOE 4.0 software [Architectural Energy Cooperation, San Francisco, USA; 2005 〈www.archenergy.com〉]. Energy savings up to 30.4% were achieved during the summer season of four months with the optimized advanced strategies when compared with the conventional base strategy while comfort and IAQ were satisfied.

Suggested Citation

  • Mossolly, M. & Ghali, K. & Ghaddar, N., 2009. "Optimal control strategy for a multi-zone air conditioning system using a genetic algorithm," Energy, Elsevier, vol. 34(1), pages 58-66.
  • Handle: RePEc:eee:energy:v:34:y:2009:i:1:p:58-66
    DOI: 10.1016/j.energy.2008.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208002570
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ke, Yu-Pei & Mumma, Stanley A., 1997. "Optimized supply-air temperature (SAT) in variable-air-volume (VAV) systems," Energy, Elsevier, vol. 22(6), pages 601-614.
    2. Zaheer-Uddin, M., 1993. "Energy start-stop and fluid flow regulated control of multizone HVAC systems," Energy, Elsevier, vol. 18(3), pages 289-302.
    3. Zheng, G.R. & Zaheer-Uddin, M., 1996. "Optimization of thermal processes in a variable air volume HVAC system," Energy, Elsevier, vol. 21(5), pages 407-420.
    4. Mathews, E. H. & Arndt, D. C. & Piani, C. B. & van Heerden, E., 2000. "Developing cost efficient control strategies to ensure optimal energy use and sufficient indoor comfort," Applied Energy, Elsevier, vol. 66(2), pages 135-159, June.
    5. Tashtoush, Bourhan & Molhim, M. & Al-Rousan, M., 2005. "Dynamic model of an HVAC system for control analysis," Energy, Elsevier, vol. 30(10), pages 1729-1745.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    2. Kusiak, Andrew & Tang, Fan & Xu, Guanglin, 2011. "Multi-objective optimization of HVAC system with an evolutionary computation algorithm," Energy, Elsevier, vol. 36(5), pages 2440-2449.
    3. Okochi, Godwine Swere & Yao, Ye, 2016. "A review of recent developments and technological advancements of variable-air-volume (VAV) air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 784-817.
    4. Kusiak, Andrew & Li, Mingyang, 2010. "Reheat optimization of the variable-air-volume box," Energy, Elsevier, vol. 35(5), pages 1997-2005.
    5. Han, H.J. & Jeon, Y.I. & Lim, S.H. & Kim, W.W. & Chen, K., 2010. "New developments in illumination, heating and cooling technologies for energy-efficient buildings," Energy, Elsevier, vol. 35(6), pages 2647-2653.
    6. Baldi, Simone & Yuan, Shuai & Endel, Petr & Holub, Ondrej, 2016. "Dual estimation: Constructing building energy models from data sampled at low rate," Applied Energy, Elsevier, vol. 169(C), pages 81-92.
    7. Kusiak, Andrew & Li, Mingyang, 2009. "Optimal decision making in ventilation control," Energy, Elsevier, vol. 34(11), pages 1835-1845.
    8. Chiu, Chien-Chin & Tsai, Nan-Chyuan & Lin, Chun-Chi, 2014. "Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)," Energy, Elsevier, vol. 66(C), pages 342-353.
    9. Khan, Muhammad Waqas & Choudhry, Mohammad Ahmad & Zeeshan, Muhammad & Ali, Ahsan, 2015. "Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit," Energy, Elsevier, vol. 81(C), pages 477-488.
    10. Yan, Huaxia & Pan, Yan & Li, Zhao & Deng, Shiming, 2018. "Further development of a thermal comfort based fuzzy logic controller for a direct expansion air conditioning system," Applied Energy, Elsevier, vol. 219(C), pages 312-324.
    11. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    12. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    13. Kusiak, Andrew & Xu, Guanglin & Tang, Fan, 2011. "Optimization of an HVAC system with a strength multi-objective particle-swarm algorithm," Energy, Elsevier, vol. 36(10), pages 5935-5943.
    14. Farinaz Behrooz & Norman Mariun & Mohammad Hamiruce Marhaban & Mohd Amran Mohd Radzi & Abdul Rahman Ramli, 2017. "A Design of a Hybrid Non-Linear Control Algorithm," Energies, MDPI, vol. 10(11), pages 1-32, November.
    15. Javier Diaz-Valdivia & Flávio A. S. Fiorelli, 2023. "Computational Analysis of the Automation Strategies of Temperatures of Supplied Air, Chilled and Condensation Water in Commercial Buildings," Energies, MDPI, vol. 16(8), pages 1-13, April.
    16. Yang Yuan & Neng Zhu & Haizhu Zhou & Hai Wang, 2021. "A New Model Predictive Control Method for Eliminating Hydraulic Oscillation and Dynamic Hydraulic Imbalance in a Complex Chilled Water System," Energies, MDPI, vol. 14(12), pages 1-23, June.
    17. Baldi, Simone & Korkas, Christos D. & Lv, Maolong & Kosmatopoulos, Elias B., 2018. "Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach," Applied Energy, Elsevier, vol. 231(C), pages 1246-1258.
    18. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    19. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Akinola, O.A., 2017. "User satisfaction-induced demand side load management in residential buildings with user budget constraint," Applied Energy, Elsevier, vol. 187(C), pages 352-366.
    20. Gomes, A. & Antunes, C. Henggeler & Martinho, J., 2013. "A physically-based model for simulating inverter type air conditioners/heat pumps," Energy, Elsevier, vol. 50(C), pages 110-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:34:y:2009:i:1:p:58-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.