IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v135y2021ics1364032120306468.html
   My bibliography  Save this article

Bioelectrochemical systems (BESs) towards conversion of carbon monoxide/syngas: A mini-review

Author

Listed:
  • Barbosa, Sónia G.
  • Peixoto, Luciana
  • Alves, Joana I.
  • Alves, M. Madalena

Abstract

Microbial conversion of carbon monoxide (CO)/syngas has been extensively investigated. The microbial conversion of CO/syngas offers numerous advantages over chemically catalyzed processes e.g. the specificity of the biocatalysts, the operation at ambient conditions and high conversion efficiencies. Bioelectrochemical systems (BESs) exploit the capacity of electrochemically active bacteria (EAB) to use insoluble electron acceptors or donors to produce electricity or added-value compounds. Electricity production from different organic sources in BESs has been broadly demonstrated, whereas electricity production from CO/syngas has been very little reported. Acetate oxidation by a consortium of carboxydotrophic and CO-tolerant EAB has been suggested to be the main pathway responsible for indirect electricity generation from CO/syngas. Although electricity production in BESs from several organic sources has been widely investigated, the interest on BESs research is currently moving to the production of added-value compounds by electro-fermentation (EF) processes. EF allows to modify redox balances by the use of electric circuits to fine tune metabolic pathways towards obtaining products with high economic value. Although EF has been widely studied, the potential of use CO-rich gas streams as substrate has been under explored. This review presents and discusses current advances on microbial conversion of CO/syngas in BESs.

Suggested Citation

  • Barbosa, Sónia G. & Peixoto, Luciana & Alves, Joana I. & Alves, M. Madalena, 2021. "Bioelectrochemical systems (BESs) towards conversion of carbon monoxide/syngas: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
  • Handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120306468
    DOI: 10.1016/j.rser.2020.110358
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120306468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Daniell & Michael Köpke & Séan Dennis Simpson, 2012. "Commercial Biomass Syngas Fermentation," Energies, MDPI, vol. 5(12), pages 1-46, December.
    2. Costa, J.C. & Oliveira, J.V. & Alves, M.M., 2016. "Response surface design to study the influence of inoculum, particle size and inoculum to substrate ratio on the methane production from Ulex sp," Renewable Energy, Elsevier, vol. 96(PB), pages 1071-1077.
    3. Jiyun Baek & Changman Kim & Young Eun Song & Hyeon Sung Im & Mutyala Sakuntala & Jung Rae Kim, 2018. "Separation of Acetate Produced from C1 Gas Fermentation Using an Electrodialysis-Based Bioelectrochemical System," Energies, MDPI, vol. 11(10), pages 1-12, October.
    4. Ma, Chaonan & Liu, Jianyong & Ye, Min & Zou, Lianpei & Qian, Guangren & Li, Yu-You, 2018. "Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 700-709.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pelaz, Guillermo & González-Arias, Judith & Mateos, Raúl & Escapa, Adrián, 2023. "Electromethanogenesis for the conversion of hydrothermal carbonization exhaust gases into methane," Renewable Energy, Elsevier, vol. 216(C).
    2. Khanongnuch, Ramita & Abubackar, Haris Nalakath & Keskin, Tugba & Gungormusler, Mine & Duman, Gozde & Aggarwal, Ayushi & Behera, Shishir Kumar & Li, Lu & Bayar, Büşra & Rene, Eldon R., 2022. "Bioprocesses for resource recovery from waste gases: Current trends and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Olabi, A.G. & Obaideen, Khaled & Elsaid, Khaled & Wilberforce, Tabbi & Sayed, Enas Taha & Maghrabie, Hussein M. & Abdelkareem, Mohammad Ali, 2022. "Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Azize Ayol & Luciana Peixoto & Tugba Keskin & Haris Nalakath Abubackar, 2021. "Reactor Designs and Configurations for Biological and Bioelectrochemical C1 Gas Conversion: A Review," IJERPH, MDPI, vol. 18(21), pages 1-36, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simge Sertkaya & Nuri Azbar & Haris Nalakath Abubackar & Tugba Keskin Gundogdu, 2021. "Design of Low-Cost Ethanol Production Medium from Syngas: An Optimization of Trace Metals for Clostridium ljungdahlii," Energies, MDPI, vol. 14(21), pages 1-15, October.
    2. Grimalt-Alemany, Antonio & Asimakopoulos, Konstantinos & Skiadas, Ioannis V. & Gavala, Hariklia N., 2020. "Modeling of syngas biomethanation and catabolic route control in mesophilic and thermophilic mixed microbial consortia," Applied Energy, Elsevier, vol. 262(C).
    3. Abubackar, Haris Nalakath & Bengelsdorf, Frank R. & Dürre, Peter & Veiga, María C. & Kennes, Christian, 2016. "Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia," Applied Energy, Elsevier, vol. 169(C), pages 210-217.
    4. Tang, Yunheng & Huang, Yun & Gan, Wentian & Xia, Ao & Liao, Qiang & Zhu, Xianqing, 2021. "Ethanol production from gas fermentation: Rapid enrichment and domestication of bacterial community with continuous CO/CO2 gas," Renewable Energy, Elsevier, vol. 175(C), pages 337-344.
    5. Sun, Xiao & Atiyeh, Hasan K. & Zhang, Hailin & Tanner, Ralph S. & Huhnke, Raymond L., 2019. "Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar," Applied Energy, Elsevier, vol. 236(C), pages 1269-1279.
    6. Nadia Cerone & Francesco Zimbardi, 2018. "Gasification of Agroresidues for Syngas Production," Energies, MDPI, vol. 11(5), pages 1-18, May.
    7. João V. Oliveira & José C. Costa & Ana J. Cavaleiro & Maria Alcina Pereira & Maria Madalena Alves, 2022. "Effect of Endogenous Methane Production: A Step Forward in the Validation of Biochemical Methane Potential (BMP) Tests," Energies, MDPI, vol. 15(13), pages 1-16, June.
    8. Vishal Ahuja & Arvind Kumar Bhatt & Balasubramani Ravindran & Yung-Hun Yang & Shashi Kant Bhatia, 2023. "A Mini-Review on Syngas Fermentation to Bio-Alcohols: Current Status and Challenges," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    9. Huang, Zhe & Grim, Gary & Schaidle, Joshua & Tao, Ling, 2020. "Using waste CO2 to increase ethanol production from corn ethanol biorefineries: Techno-economic analysis," Applied Energy, Elsevier, vol. 280(C).
    10. Fares Almomani & Amera Abdelbar & Sophia Ghanimeh, 2023. "A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    11. Stolarski, Mariusz Jerzy & Warmiński, Kazimierz & Krzyżaniak, Michał & Olba–Zięty, Ewelina & Akincza, Marta, 2020. "Bioenergy technologies and biomass potential vary in Northern European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    12. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    13. Monir, Minhaj Uddin & Aziz, Azrina Abd & Khatun, Fatema & Yousuf, Abu, 2020. "Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum," Renewable Energy, Elsevier, vol. 157(C), pages 1116-1123.
    14. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    15. Ramachandriya, Karthikeyan D. & Kundiyana, Dimple K. & Wilkins, Mark R. & Terrill, Jennine B. & Atiyeh, Hasan K. & Huhnke, Raymond L., 2013. "Carbon dioxide conversion to fuels and chemicals using a hybrid green process," Applied Energy, Elsevier, vol. 112(C), pages 289-299.
    16. Marta Pacheco & Filomena Pinto & Anders Brunsvik & Rui André & Paula Marques & Ricardo Mata & Joana Ortigueira & Francisco Gírio & Patrícia Moura, 2023. "Effects of Lignin Gasification Impurities on the Growth and Product Distribution of Butyribacterium methylotrophicum during Syngas Fermentation," Energies, MDPI, vol. 16(4), pages 1-17, February.
    17. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    18. Zhang, Cunsheng & Kang, Xinxin & Wang, Fenghuan & Tian, Yufei & Liu, Tao & Su, Yanyan & Qian, Tingting & Zhang, Yifeng, 2020. "Valorization of food waste for cost-effective reducing sugar recovery in a two-stage enzymatic hydrolysis platform," Energy, Elsevier, vol. 208(C).
    19. Khanongnuch, Ramita & Abubackar, Haris Nalakath & Keskin, Tugba & Gungormusler, Mine & Duman, Gozde & Aggarwal, Ayushi & Behera, Shishir Kumar & Li, Lu & Bayar, Büşra & Rene, Eldon R., 2022. "Bioprocesses for resource recovery from waste gases: Current trends and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Shen, Yanwen & Brown, Robert & Wen, Zhiyou, 2014. "Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor," Applied Energy, Elsevier, vol. 136(C), pages 68-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:135:y:2021:i:c:s1364032120306468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.