IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp289-299.html
   My bibliography  Save this article

Carbon dioxide conversion to fuels and chemicals using a hybrid green process

Author

Listed:
  • Ramachandriya, Karthikeyan D.
  • Kundiyana, Dimple K.
  • Wilkins, Mark R.
  • Terrill, Jennine B.
  • Atiyeh, Hasan K.
  • Huhnke, Raymond L.

Abstract

A unique hybrid technology that uses renewable hydrogen (H2) and carbon dioxide (CO2) sequestered from large point sources, to produce fuels and chemicals has been proposed and tested. The primary objective of this research was to determine the feasibility of using two acetogenic bacteria to metabolize H2 and CO2 for the production of ethanol. Three experiments were conducted in small scale reactors to select a bacterium, feed gas composition and nutrient medium source to produce ethanol. The results indicated that Clostridium carboxidivorans produced 33% more ethanol and 66% less acetic acid compared to Clostridium ragsdalei, making C. carboxidivorans the better candidate for ethanol production. Furthermore, the removal of morpholinoethanesulfonic acid (MES) buffer from cotton seed extract (CSE) medium offered a low-cost medium for fermentations. Additionally, we observed that corn steep liquor (CSL) in the medium diversified the product range with both bacteria. Maximum concentrations of ethanol, n-butanol, n-hexanol, acetic acid, butyric acid, and hexanoic acid from different fermentation treatments were 2.78gL−1, 0.70gL−1, 0.52gL−1, 4.06gL−1, 0.13gL−1 and 0.42gL−1, respectively. This study highlights the important role that acetogenic microbes can offer for CO2 conversion into valuable fuels and chemicals.

Suggested Citation

  • Ramachandriya, Karthikeyan D. & Kundiyana, Dimple K. & Wilkins, Mark R. & Terrill, Jennine B. & Atiyeh, Hasan K. & Huhnke, Raymond L., 2013. "Carbon dioxide conversion to fuels and chemicals using a hybrid green process," Applied Energy, Elsevier, vol. 112(C), pages 289-299.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:289-299
    DOI: 10.1016/j.apenergy.2013.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005242
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Daniell & Michael Köpke & Séan Dennis Simpson, 2012. "Commercial Biomass Syngas Fermentation," Energies, MDPI, vol. 5(12), pages 1-46, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chauvy, Remi & Meunier, Nicolas & Thomas, Diane & De Weireld, Guy, 2019. "Selecting emerging CO2 utilization products for short- to mid-term deployment," Applied Energy, Elsevier, vol. 236(C), pages 662-680.
    2. Chen, Huiyao & Chu, Fengming & Yang, Lijun & Ola, Oluwafunmilola & Du, Xiaoze & Yang, Yongping, 2018. "Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls," Applied Energy, Elsevier, vol. 230(C), pages 1403-1413.
    3. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Fares Almomani & Amera Abdelbar & Sophia Ghanimeh, 2023. "A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    5. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
    6. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    7. Fagbohungbe, Michael O. & Komolafe, Abiodun O. & Okere, Uchechukwu V., 2019. "Renewable hydrogen anaerobic fermentation technology: Problems and potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Wan Isahak, Wan Nor Roslam & Che Ramli, Zatil Amali & Mohamed Hisham, Mohamed Wahab & Yarmo, Mohd Ambar, 2015. "The formation of a series of carbonates from carbon dioxide: Capturing and utilisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 93-106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marta Pacheco & Filomena Pinto & Anders Brunsvik & Rui André & Paula Marques & Ricardo Mata & Joana Ortigueira & Francisco Gírio & Patrícia Moura, 2023. "Effects of Lignin Gasification Impurities on the Growth and Product Distribution of Butyribacterium methylotrophicum during Syngas Fermentation," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    3. Simge Sertkaya & Nuri Azbar & Haris Nalakath Abubackar & Tugba Keskin Gundogdu, 2021. "Design of Low-Cost Ethanol Production Medium from Syngas: An Optimization of Trace Metals for Clostridium ljungdahlii," Energies, MDPI, vol. 14(21), pages 1-15, October.
    4. Grimalt-Alemany, Antonio & Asimakopoulos, Konstantinos & Skiadas, Ioannis V. & Gavala, Hariklia N., 2020. "Modeling of syngas biomethanation and catabolic route control in mesophilic and thermophilic mixed microbial consortia," Applied Energy, Elsevier, vol. 262(C).
    5. Abubackar, Haris Nalakath & Bengelsdorf, Frank R. & Dürre, Peter & Veiga, María C. & Kennes, Christian, 2016. "Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia," Applied Energy, Elsevier, vol. 169(C), pages 210-217.
    6. Tang, Yunheng & Huang, Yun & Gan, Wentian & Xia, Ao & Liao, Qiang & Zhu, Xianqing, 2021. "Ethanol production from gas fermentation: Rapid enrichment and domestication of bacterial community with continuous CO/CO2 gas," Renewable Energy, Elsevier, vol. 175(C), pages 337-344.
    7. Sun, Xiao & Atiyeh, Hasan K. & Zhang, Hailin & Tanner, Ralph S. & Huhnke, Raymond L., 2019. "Enhanced ethanol production from syngas by Clostridium ragsdalei in continuous stirred tank reactor using medium with poultry litter biochar," Applied Energy, Elsevier, vol. 236(C), pages 1269-1279.
    8. Nadia Cerone & Francesco Zimbardi, 2018. "Gasification of Agroresidues for Syngas Production," Energies, MDPI, vol. 11(5), pages 1-18, May.
    9. Shen, Yanwen & Brown, Robert & Wen, Zhiyou, 2014. "Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor," Applied Energy, Elsevier, vol. 136(C), pages 68-76.
    10. Vishal Ahuja & Arvind Kumar Bhatt & Balasubramani Ravindran & Yung-Hun Yang & Shashi Kant Bhatia, 2023. "A Mini-Review on Syngas Fermentation to Bio-Alcohols: Current Status and Challenges," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    11. Huang, Zhe & Grim, Gary & Schaidle, Joshua & Tao, Ling, 2020. "Using waste CO2 to increase ethanol production from corn ethanol biorefineries: Techno-economic analysis," Applied Energy, Elsevier, vol. 280(C).
    12. Fares Almomani & Amera Abdelbar & Sophia Ghanimeh, 2023. "A Review of the Recent Advancement of Bioconversion of Carbon Dioxide to Added Value Products: A State of the Art," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    13. Monir, Minhaj Uddin & Aziz, Azrina Abd & Khatun, Fatema & Yousuf, Abu, 2020. "Bioethanol production through syngas fermentation in a tar free bioreactor using Clostridium butyricum," Renewable Energy, Elsevier, vol. 157(C), pages 1116-1123.
    14. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    15. Chu, Pei Lin & Vanderghem, Caroline & MacLean, Heather L. & Saville, Bradley A., 2017. "Financial analysis and risk assessment of hydroprocessed renewable jet fuel production from camelina, carinata and used cooking oil," Applied Energy, Elsevier, vol. 198(C), pages 401-409.
    16. Fagbohungbe, Michael O. & Komolafe, Abiodun O. & Okere, Uchechukwu V., 2019. "Renewable hydrogen anaerobic fermentation technology: Problems and potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Barbosa, Sónia G. & Peixoto, Luciana & Alves, Joana I. & Alves, M. Madalena, 2021. "Bioelectrochemical systems (BESs) towards conversion of carbon monoxide/syngas: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:289-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.