IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222010660.html
   My bibliography  Save this article

Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater

Author

Listed:
  • Ahmed, Shams Forruque
  • Mofijur, M.
  • Islam, Nafisa
  • Parisa, Tahlil Ahmed
  • Rafa, Nazifa
  • Bokhari, Awais
  • Klemeš, Jiří Jaromír
  • Indra Mahlia, Teuku Meurah

Abstract

Bio-electrochemical systems, such as microbial fuel cells (MFCs), serve as greener alternatives to conventional fuel energy. Despite the burgeoning review works on MFCs, comprehensive discussions are lacking on MFC designs and applications. This review paper provides insights into MFC applications, substrates used in MFC and the various design, technological, and chemical factors affecting MFC performance. MFCs have demonstrated efficacy in wastewater treatment of at least 50% and up to 98%. MFCs have been reported to produce ∼30 W/m2 electricity and ∼1 m3/d of biohydrogen, depending on the design and feedstock. Electricity generation rates of up to 5.04 mW/m−2–3.6 mW/m−2, 75–513 mW/m−2, and 135.4 mW/m−2 have been found for SCMFCs, double chamber MFCs, and stacked MFCs with the highest being produced by the single/hybrid single-chamber type using microalgae. Hybrid MFCs may emerge as financially promising technologies worth investigating due to their low operational costs, integrating low-cost proton exchange membranes such as PVA-Nafion-borosilicate, and electrodes made of natural materials, carbon, metal, and ceramic. MFCs are mostly used in laboratories due to their low power output and the difficulties in assessing the economic feasibility of the technology. The MFCs can generate incomes of as much as $2,498.77 × 10−2/(W/m2) annually through wastewater treatment and energy generation alone. The field application of MFC technology is also narrow due to its microbiological, electrochemical, and technological limitations, exacerbated by the gap in knowledge between laboratory and commercial-scale applications. Further research into novel and economically feasible electrode and membrane materials, the improvement of electrogenicity of the microbes used, and the potential of hybrid MFCs will provide opportunities to launch MFCs from the laboratory to the commercial-scale as a bid to improve the global energy security in an eco-friendly way.

Suggested Citation

  • Ahmed, Shams Forruque & Mofijur, M. & Islam, Nafisa & Parisa, Tahlil Ahmed & Rafa, Nazifa & Bokhari, Awais & Klemeš, Jiří Jaromír & Indra Mahlia, Teuku Meurah, 2022. "Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222010660
    DOI: 10.1016/j.energy.2022.124163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222010660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trapero, Juan R. & Horcajada, Laura & Linares, Jose J. & Lobato, Justo, 2017. "Is microbial fuel cell technology ready? An economic answer towards industrial commercialization," Applied Energy, Elsevier, vol. 185(P1), pages 698-707.
    2. Kumar, Ravinder & Singh, Lakhveer & Zularisam, A.W., 2016. "Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1322-1336.
    3. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    4. Ik Muo & Adebayo Azeez, A., 2019. "Green Entrepreneurship: Literature Review And Agenda For Future Research," International Journal of Entrepreneurial Knowledge, Center for International Scientific Research of VSO and VSPP, vol. 7(2), pages 17-29, December.
    5. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    6. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    7. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Atabani, A.E., 2013. "Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective," Energy, Elsevier, vol. 55(C), pages 879-887.
    8. Choudhury, Payel & Uday, Uma Shankar Prasad & Mahata, Nibedita & Nath Tiwari, Onkar & Narayan Ray, Rup & Kanti Bandyopadhyay, Tarun & Bhunia, Biswanath, 2017. "Performance improvement of microbial fuel cells for waste water treatment along with value addition: A review on past achievements and recent perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 372-389.
    9. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    10. Tee, Pei Fang & Abdullah, Mohammad Omar & Tan, Ivy Ai Wei & Rashid, Nur Khairunnisa Abdul & Amin, Mohamed Afizal Mohamed & Nolasco-Hipolito, Cirilo & Bujang, Kopli, 2016. "Review on hybrid energy systems for wastewater treatment and bio-energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 235-246.
    11. Sami G. A. Flimban & Iqbal M. I. Ismail & Taeyoung Kim & Sang-Eun Oh, 2019. "Overview of Recent Advancements in the Microbial Fuel Cell from Fundamentals to Applications: Design, Major Elements, and Scalability," Energies, MDPI, vol. 12(17), pages 1-20, September.
    12. Shewa, Wudneh Ayele & Lalman, Jerald A. & Chaganti, Subba Rao & Heath, Daniel D., 2016. "Electricity production from lignin photocatalytic degradation byproducts," Energy, Elsevier, vol. 111(C), pages 774-784.
    13. Zhang, Ying & Liu, Mengmeng & Zhou, Minghua & Yang, Huijia & Liang, Liang & Gu, Tingyue, 2019. "Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 13-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonopoulou, G. & Bampos, G. & Ntaikou, I. & Alexandropoulou, M. & Dailianis, S. & Bebelis, S. & Lyberatos, G., 2023. "The biochemical and electrochemical characteristics of a microbial fuel cell used to produce electricity from olive mill wastewater," Energy, Elsevier, vol. 282(C).
    2. Khaya Pearlman Shabangu & Babatunde Femi Bakare & Joseph Kapuku Bwapwa, 2022. "Microbial Fuel Cells for Electrical Energy: Outlook on Scaling-Up and Application Possibilities towards South African Energy Grid," Sustainability, MDPI, vol. 14(21), pages 1-27, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jianjun & Zhang, Quanguo & Lee, Duu-Jong & Ngo, Huu Hao, 2018. "Feasible use of microbial fuel cells for pollution treatment," Renewable Energy, Elsevier, vol. 129(PB), pages 824-829.
    2. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    3. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    5. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    6. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    7. Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
    8. Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    9. Santoro, Carlo & Abad, Fernando Benito & Serov, Alexey & Kodali, Mounika & Howe, Kerry J. & Soavi, Francesca & Atanassov, Plamen, 2017. "Supercapacitive microbial desalination cells: New class of power generating devices for reduction of salinity content," Applied Energy, Elsevier, vol. 208(C), pages 25-36.
    10. Yang, Wei & Li, Jun & Fu, Qian & Zhang, Liang & Wei, Zidong & Liao, Qiang & Zhu, Xun, 2021. "Minimizing mass transfer losses in microbial fuel cells: Theories, progresses and prospectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    11. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
    12. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    13. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    14. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    15. Fischer, Fabian & Sugnaux, Marc & Savy, Cyrille & Hugenin, Gérald, 2018. "Microbial fuel cell stack power to lithium battery stack: Pilot concept for scale up," Applied Energy, Elsevier, vol. 230(C), pages 1633-1644.
    16. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    17. Wang, Chin-Tsan & Huang, Yan-Sian & Sangeetha, Thangavel & Yan, Wei-Mon, 2018. "Assessment of recirculation batch mode operation in bufferless Bio-cathode microbial Fuel Cells (MFCs)," Applied Energy, Elsevier, vol. 209(C), pages 120-126.
    18. AlSayed, Ahmed & Soliman, Moomen & Eldyasti, Ahmed, 2020. "Microbial fuel cells for municipal wastewater treatment: From technology fundamentals to full-scale development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    19. Zhang, Ying & Liu, Mengmeng & Zhou, Minghua & Yang, Huijia & Liang, Liang & Gu, Tingyue, 2019. "Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 13-29.
    20. Asif Nadeem Tabish & Iqra Farhat & Muneeb Irshad & Muhammad Asif Hussain & Muhammad Usman & Tariq Nawaz Chaudhary & Yasser Fouad & Sohaib Raza & Waqar Muhammad Ashraf & Jaroslaw Krzywanski, 2023. "Electrochemical Insight into the Use of Microbial Fuel Cells for Bioelectricity Generation and Wastewater Treatment," Energies, MDPI, vol. 16(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222010660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.