IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v133y2020ics1364032120304585.html
   My bibliography  Save this article

Proliferation of offshore wind farms in the North Sea and surrounding waters revealed by satellite image time series

Author

Listed:
  • Xu, Wenxuan
  • Liu, Yongxue
  • Wu, Wei
  • Dong, Yanzhu
  • Lu, Wanyun
  • Liu, Yongchao
  • Zhao, Bingxue
  • Li, Huiting
  • Yang, Renfei

Abstract

An accurate and detailed determination of the status of offshore wind farms (OWFs) is crucial for offshore wind energy development, assessment, and management. However, existing OWF maps have several knowledge gaps, and it is difficult to keep these maps up-to-date over large sea areas. To address these issues, the North Sea and surrounding waters were selected as a case study, and a visual saliency detection (VSD) algorithm was developed, based on time-series of multi-source optical satellite images, to determine the status of offshore wind turbines (OWTs) (i.e. their locations and installation dates). A total of 4277 OWTs were detected in 71 OWFs in the North Sea and surrounding waters, as of July 2018, with an overall accuracy of 97.98%, a commission error rate of 1.69%, and an omission error rate of 0.33%. Besides, a proliferation of OWFs was observed in the North Sea and surrounding waters using time-series satellite monitoring, with an average annual growth rate of 22.99% during the past decade (2008–2018). Furthermore, the proposed VSD algorithm was applied to assess offshore wind energy utilisation and to map the global distribution of 6166 OWTs in 131 OWFs. This study contributes in providing a robust and cost-efficient framework for investigating OWFs over a large sea area. To the best of our knowledge, this is the first spatiotemporally-detailed inventory of OWFs, which will complement official databases. Moreover, it provides a reference for assessing the potential impact of active and decommissioned OWFs in marine ecosystems.

Suggested Citation

  • Xu, Wenxuan & Liu, Yongxue & Wu, Wei & Dong, Yanzhu & Lu, Wanyun & Liu, Yongchao & Zhao, Bingxue & Li, Huiting & Yang, Renfei, 2020. "Proliferation of offshore wind farms in the North Sea and surrounding waters revealed by satellite image time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120304585
    DOI: 10.1016/j.rser.2020.110167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120304585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pazheri, F.R. & Othman, M.F. & Malik, N.H., 2014. "A review on global renewable electricity scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 835-845.
    2. Markard, Jochen & Petersen, Regula, 2009. "The offshore trend: Structural changes in the wind power sector," Energy Policy, Elsevier, vol. 37(9), pages 3545-3556, September.
    3. Klain, Sarah C. & Satterfield, Terre & Sinner, Jim & Ellis, Joanne I. & Chan, Kai M.A., 2018. "Bird Killer, Industrial Intruder or Clean Energy? Perceiving Risks to Ecosystem Services Due to an Offshore Wind Farm," Ecological Economics, Elsevier, vol. 143(C), pages 111-129.
    4. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    5. Oh, Ki-Yong & Nam, Woochul & Ryu, Moo Sung & Kim, Ji-Young & Epureanu, Bogdan I., 2018. "A review of foundations of offshore wind energy convertors: Current status and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 16-36.
    6. Dunnett, David & Wallace, James S., 2009. "Electricity generation from wave power in Canada," Renewable Energy, Elsevier, vol. 34(1), pages 179-195.
    7. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    8. Lacal-Arántegui, Roberto & Yusta, José M. & Domínguez-Navarro, José Antonio, 2018. "Offshore wind installation: Analysing the evidence behind improvements in installation time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 133-145.
    9. Liu, Fa & Sun, Fubao & Liu, Wenbin & Wang, Tingting & Wang, Hong & Wang, Xunming & Lim, Wee Ho, 2019. "On wind speed pattern and energy potential in China," Applied Energy, Elsevier, vol. 236(C), pages 867-876.
    10. Bosch, Jonathan & Staffell, Iain & Hawkes, Adam D., 2018. "Temporally explicit and spatially resolved global offshore wind energy potentials," Energy, Elsevier, vol. 163(C), pages 766-781.
    11. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    12. Elsner, Paul, 2019. "Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 394-407.
    13. Schweizer, Joerg & Antonini, Alessandro & Govoni, Laura & Gottardi, Guido & Archetti, Renata & Supino, Enrico & Berretta, Claudia & Casadei, Carlo & Ozzi, Claudia, 2016. "Investigating the potential and feasibility of an offshore wind farm in the Northern Adriatic Sea," Applied Energy, Elsevier, vol. 177(C), pages 449-463.
    14. Bilgili, Mehmet & Yasar, Abdulkadir & Simsek, Erdogan, 2011. "Offshore wind power development in Europe and its comparison with onshore counterpart," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 905-915, February.
    15. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    16. Lackner, Matthew A. & Rogers, Anthony L. & Manwell, James F. & McGowan, Jon G., 2010. "A new method for improved hub height mean wind speed estimates using short-term hub height data," Renewable Energy, Elsevier, vol. 35(10), pages 2340-2347.
    17. Maslov, Nicolas & Claramunt, Christophe & Wang, Tianzhen & Tang, Tianhao, 2017. "Method to estimate the visual impact of an offshore wind farm," Applied Energy, Elsevier, vol. 204(C), pages 1422-1430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongxue Liu & Yuling Pu & Xueying Hu & Yanzhu Dong & Wei Wu & Chuanmin Hu & Yuzhong Zhang & Songhan Wang, 2023. "Global declines of offshore gas flaring inadequate to meet the 2030 goal," Nature Sustainability, Nature, vol. 6(9), pages 1095-1102, September.
    2. Majidi Nezhad, Meysam & Neshat, Mehdi & Piras, Giuseppe & Astiaso Garcia, Davide, 2022. "Sites exploring prioritisation of offshore wind energy potential and mapping for wind farms installation: Iranian islands case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Wang, Kechao & Xiao, Wu & He, Tingting & Zhang, Maoxin, 2024. "Remote sensing unveils the explosive growth of global offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Anne P. M. Velenturf, 2021. "A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind," Energies, MDPI, vol. 14(17), pages 1-41, September.
    5. Liu, Ding Peng & Ferri, Giulio & Heo, Taemin & Marino, Enzo & Manuel, Lance, 2024. "On long-term fatigue damage estimation for a floating offshore wind turbine using a surrogate model," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsner, Paul, 2019. "Continental-scale assessment of the African offshore wind energy potential: Spatial analysis of an under-appreciated renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 394-407.
    2. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    3. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    4. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    5. Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.
    6. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    7. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    8. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    9. Christoffer Hallgren & Johan Arnqvist & Stefan Ivanell & Heiner Körnich & Ville Vakkari & Erik Sahlée, 2020. "Looking for an Offshore Low-Level Jet Champion among Recent Reanalyses: A Tight Race over the Baltic Sea," Energies, MDPI, vol. 13(14), pages 1-26, July.
    10. Kern, Florian & Smith, Adrian & Shaw, Chris & Raven, Rob & Verhees, Bram, 2014. "From laggard to leader: Explaining offshore wind developments in the UK," Energy Policy, Elsevier, vol. 69(C), pages 635-646.
    11. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2018. "A lifecycle techno-economic model of offshore wind energy for different entry and exit instances," Applied Energy, Elsevier, vol. 221(C), pages 406-424.
    12. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    13. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    14. Hadadpour, Sanaz & Etemad-Shahidi, Amir & Jabbari, Ebrahim & Kamranzad, Bahareh, 2014. "Wave energy and hot spots in Anzali port," Energy, Elsevier, vol. 74(C), pages 529-536.
    15. Bilgili, Mehmet & Ozbek, Arif & Sahin, Besir & Kahraman, Ali, 2015. "An overview of renewable electric power capacity and progress in new technologies in the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 323-334.
    16. Sierra, J.P. & Mösso, C. & González-Marco, D., 2014. "Wave energy resource assessment in Menorca (Spain)," Renewable Energy, Elsevier, vol. 71(C), pages 51-60.
    17. Prässler, Thomas & Schaechtele, Jan, 2012. "Comparison of the financial attractiveness among prospective offshore wind parks in selected European countries," Energy Policy, Elsevier, vol. 45(C), pages 86-101.
    18. Iglesias, G. & Carballo, R., 2010. "Wave power for La Isla Bonita," Energy, Elsevier, vol. 35(12), pages 5013-5021.
    19. Pustina, L. & Lugni, C. & Bernardini, G. & Serafini, J. & Gennaretti, M., 2020. "Control of power generated by a floating offshore wind turbine perturbed by sea waves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120304585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.