IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i1p179-195.html
   My bibliography  Save this article

Electricity generation from wave power in Canada

Author

Listed:
  • Dunnett, David
  • Wallace, James S.

Abstract

The performance of three different types of wave energy converters (WECs) is evaluated at hundreds of Canadian locations using wave activity data made available by the Marine Environmental Data Service of Canada. Two Atlantic and three Pacific locations are found where at least one of these devices operates with a capacity factor of greater than 20%, while also being located close to urban/industrial centers. The economics of a nominal 25GWh wave power plant are investigated at these five locations and compared among the three WEC types using two indicators: the 25-year life-cycle cost, and the required price of electricity for a 10-year simple payback period. The lowest required electricity price for a 10-year payback is $0.089/kWh, and occurs at a location near the Hibernia Oil Platform using the AquaBuOY WEC. The highest annual capacity factor is 32.1%, which occurs near the Hibernia Oil Platform when using the WaveDragon WEC. The 25-year life-cycle cost evaluations suggest that wave power plants at locations near Ucluelet, St. John's, and the Hibernia Oil Platform could all be profitable using either the AquaBuOY or the WaveDragon if a price of electricity between $0.10 and $0.15/kWh can be secured, depending on location and device.

Suggested Citation

  • Dunnett, David & Wallace, James S., 2009. "Electricity generation from wave power in Canada," Renewable Energy, Elsevier, vol. 34(1), pages 179-195.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:1:p:179-195
    DOI: 10.1016/j.renene.2008.04.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108001377
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.04.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, G, 2000. "Feasibility of large scale offshore wind power for Hong Kong — a preliminary study," Renewable Energy, Elsevier, vol. 21(3), pages 387-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dicorato, M. & Forte, G. & Pisani, M. & Trovato, M., 2011. "Guidelines for assessment of investment cost for offshore wind generation," Renewable Energy, Elsevier, vol. 36(8), pages 2043-2051.
    2. Nie, Bingchuan & Li, Jiachun, 2018. "Technical potential assessment of offshore wind energy over shallow continent shelf along China coast," Renewable Energy, Elsevier, vol. 128(PA), pages 391-399.
    3. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2006. "Wind power potential and characteristic analysis of the Pearl River Delta region, China," Renewable Energy, Elsevier, vol. 31(6), pages 739-753.
    4. Shu, Z.R. & Li, Q.S. & Chan, P.W., 2015. "Investigation of offshore wind energy potential in Hong Kong based on Weibull distribution function," Applied Energy, Elsevier, vol. 156(C), pages 362-373.
    5. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    6. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    7. Weisser, D, 2003. "A wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function," Renewable Energy, Elsevier, vol. 28(11), pages 1803-1812.
    8. Cancino-Solórzano, Yoreley & Xiberta-Bernat, Jorge, 2009. "Statistical analysis of wind power in the region of Veracruz (Mexico)," Renewable Energy, Elsevier, vol. 34(6), pages 1628-1634.
    9. Steve H.L. Yim & Jimmy C.H. Fung & Alexis K.H. Lau, 2009. "Mesoscale Simulation of Year-to-Year Variation of Wind Power Potential over Southern China," Energies, MDPI, vol. 2(2), pages 1-22, June.
    10. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    11. Lu, Lin & Yang, Hongxing & Burnett, John, 2002. "Investigation on wind power potential on Hong Kong islands—an analysis of wind power and wind turbine characteristics," Renewable Energy, Elsevier, vol. 27(1), pages 1-12.
    12. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    13. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    14. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    15. Shu, Z.R. & Li, Q.S. & He, Y.C. & Chan, P.W., 2016. "Observations of offshore wind characteristics by Doppler-LiDAR for wind energy applications," Applied Energy, Elsevier, vol. 169(C), pages 150-163.
    16. Hong, Lixuan & Möller, Bernd, 2011. "Offshore wind energy potential in China: Under technical, spatial and economic constraints," Energy, Elsevier, vol. 36(7), pages 4482-4491.
    17. Xiaoxia Gao & Lu Xia & Lin Lu & Yonghua Li, 2019. "Analysis of Hong Kong’s Wind Energy: Power Potential, Development Constraints, and Experiences from Other Countries for Local Wind Energy Promotion Strategies," Sustainability, MDPI, vol. 11(3), pages 1-20, February.
    18. deCastro, M. & Salvador, S. & Gómez-Gesteira, M. & Costoya, X. & Carvalho, D. & Sanz-Larruga, F.J. & Gimeno, L., 2019. "Europe, China and the United States: Three different approaches to the development of offshore wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 55-70.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:1:p:179-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.