IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v132y2020ics1364032120303488.html
   My bibliography  Save this article

Power-to-methane, coupling CO2 capture with fuel production: An overview

Author

Listed:
  • Hidalgo, D.
  • Martín-Marroquín, J.M.

Abstract

This paper provides a revision of the latest studies on the topic methanation, a multi-stage process where water is first converted into hydrogen in an electrolyzer, which subsequently reacts with carbon dioxide to produce methane. The present and future of the most common water electrolysis technologies is addressed. Critical issues to take into consideration when selecting a carbon dioxide source are evaluated. Chemical and biological approaches, together with photocatalytic configurations are discussed, analyzing pros and cons in all the cases. This paper also highlights the extensive work being done in the development of catalysts capable of selectively converting carbon dioxide into methane, as well as the different reactor configurations that can be used with this aim in any of the available methanation modalities. Relevant power-to-methane plants in Europe have been identified and assessed regarding their location, year of commissioning, capacity, technology for electrolysis and methanation type. Finally, cost issues are analyzed, highlighting economic perspectives of the power-to-methane technologies for the next decades. This document reviews all the key elements associated with the methanation process, revealing which aspects can pave the way for the large-scale implementation of this power generation model. In this sense, the gradual cost reduction of the equipment involved and the continuous increase in the efficiency of the processes are revealed as crucial aspects that can lead to a general implementation of the methanation concept on the way to a low carbon economy.

Suggested Citation

  • Hidalgo, D. & Martín-Marroquín, J.M., 2020. "Power-to-methane, coupling CO2 capture with fuel production: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303488
    DOI: 10.1016/j.rser.2020.110057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120303488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mantulet, Gabin & Bidaud, Adrien & Mima, Silvana, 2020. "The role of biomass gasification and methanisation in the decarbonisation strategies," Energy, Elsevier, vol. 193(C).
    2. Hossein Robatjazi & Hangqi Zhao & Dayne F. Swearer & Nathaniel J. Hogan & Linan Zhou & Alessandro Alabastri & Michael J. McClain & Peter Nordlander & Naomi J. Halas, 2017. "Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    3. Heng Rao & Luciana C. Schmidt & Julien Bonin & Marc Robert, 2017. "Visible-light-driven methane formation from CO2 with a molecular iron catalyst," Nature, Nature, vol. 548(7665), pages 74-77, August.
    4. Voelklein, M.A. & Rusmanis, Davis & Murphy, J.D., 2019. "Biological methanation: Strategies for in-situ and ex-situ upgrading in anaerobic digestion," Applied Energy, Elsevier, vol. 235(C), pages 1061-1071.
    5. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    6. Gunther Glenk & Stefan Reichelstein, 2019. "Publisher Correction: Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(4), pages 347-347, April.
    7. Cui, Duo & Deng, Zhu & Liu, Zhu, 2019. "China’s non-fossil fuel CO2 emissions from industrial processes," Applied Energy, Elsevier, vol. 254(C).
    8. Gabin Mantulet & Adrien Bidaud & Silvana Mima, 2020. "The role of biomass gasification and methanisation in the decarbonisation strategies," Post-Print hal-02418770, HAL.
    9. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    10. Gunther Glenk & Stefan Reichelstein, 2019. "Economics of converting renewable power to hydrogen," Nature Energy, Nature, vol. 4(3), pages 216-222, March.
    11. Katarzyna P. Sokol & William E. Robinson & Julien Warnan & Nikolay Kornienko & Marc M. Nowaczyk & Adrian Ruff & Jenny Z. Zhang & Erwin Reisner, 2018. "Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase," Nature Energy, Nature, vol. 3(11), pages 944-951, November.
    12. Witte, Julia & Calbry-Muzyka, Adelaide & Wieseler, Tanja & Hottinger, Peter & Biollaz, Serge M.A. & Schildhauer, Tilman J., 2019. "Demonstrating direct methanation of real biogas in a fluidised bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 359-371.
    13. Seifert, A.H. & Rittmann, S. & Herwig, C., 2014. "Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis," Applied Energy, Elsevier, vol. 132(C), pages 155-162.
    14. Xiaoliang Yan & Wei Sun & Liming Fan & Paul N. Duchesne & Wu Wang & Christian Kübel & Di Wang & Sai Govind Hari Kumar & Young Feng Li & Alexandra Tavasoli & Thomas E. Wood & Darius L. H. Hung & Lili W, 2019. "Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    15. Vo, Truc T.Q. & Wall, David M. & Ring, Denis & Rajendran, Karthik & Murphy, Jerry D., 2018. "Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation," Applied Energy, Elsevier, vol. 212(C), pages 1191-1202.
    16. Tagliapietra, Simone & Zachmann, Georg & Edenhofer, Ottmar & Glachant, Jean-Michel & Linares, Pedro & Loeschel, Andreas, 2019. "The European union energy transition: Key priorities for the next five years," Energy Policy, Elsevier, vol. 132(C), pages 950-954.
    17. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    18. Hidalgo, D. & Sanz-Bedate, S. & Martín-Marroquín, J.M. & Castro, J. & Antolín, G., 2020. "Selective separation of CH4 and CO2 using membrane contactors," Renewable Energy, Elsevier, vol. 150(C), pages 935-942.
    19. Ulrich Ulmer & Thomas Dingle & Paul N. Duchesne & Robert H. Morris & Alexandra Tavasoli & Thomas Wood & Geoffrey A. Ozin, 2019. "Fundamentals and applications of photocatalytic CO2 methanation," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    20. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    21. Gorre, Jachin & Ruoss, Fabian & Karjunen, Hannu & Schaffert, Johannes & Tynjälä, Tero, 2020. "Cost benefits of optimizing hydrogen storage and methanation capacities for Power-to-Gas plants in dynamic operation," Applied Energy, Elsevier, vol. 257(C).
    22. Jing Shen & Ruud Kortlever & Recep Kas & Yuvraj Y. Birdja & Oscar Diaz-Morales & Youngkook Kwon & Isis Ledezma-Yanez & Klaas Jan P. Schouten & Guido Mul & Marc T. M. Koper, 2015. "Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin," Nature Communications, Nature, vol. 6(1), pages 1-8, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    2. Fózer, Dániel & Volanti, Mirco & Passarini, Fabrizio & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Mizsey, Péter, 2020. "Bioenergy with carbon emissions capture and utilisation towards GHG neutrality: Power-to-Gas storage via hydrothermal gasification," Applied Energy, Elsevier, vol. 280(C).
    3. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    4. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    5. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    6. Olabi, A.G. & Abdelkareem, Mohammad Ali, 2022. "Renewable energy and climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Zhengmeng Hou & Liangchao Huang & Yachen Xie & Lin Wu & Yanli Fang & Qichen Wang & Yilin Guo, 2023. "Economic Analysis of Methanating CO 2 and Hydrogen-Rich Industrial Waste Gas in Depleted Natural Gas Reservoirs," Energies, MDPI, vol. 16(9), pages 1-12, April.
    8. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    9. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).
    10. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    11. Victor Soto & Claudia Ulloa & Ximena Garcia, 2022. "A 3D Transient CFD Simulation of a Multi-Tubular Reactor for Power to Gas Applications," Energies, MDPI, vol. 15(9), pages 1-21, May.
    12. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Furst, Oscar & Wehrle, Lukas & Schmider, Daniel & Dailly, Julian & Deutschmann, Olaf, 2024. "Modeling, optimization and comparative assessment of power-to-methane and carbon capture technologies for renewable fuel production," Applied Energy, Elsevier, vol. 375(C).
    14. Morgenthaler, Simon & Dünzen, Justus & Stadler, Ingo & Witthaut, Dirk, 2021. "Three stages in the co-transformation of the energy and mobility sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    15. Riccardo Risso & Lucia Cardona & Maurizio Archetti & Filippo Lossani & Barbara Bosio & Dario Bove, 2023. "A Review of On-Board Carbon Capture and Storage Techniques: Solutions to the 2030 IMO Regulations," Energies, MDPI, vol. 16(18), pages 1-25, September.
    16. Lv, Zongze & Du, Hong & Xu, Shaojun & Deng, Tao & Ruan, Jiaqi & Qin, Changlei, 2024. "Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation," Applied Energy, Elsevier, vol. 355(C).
    17. Ouyang, Tiancheng & Tan, Jiaqi & Wu, Wencong & Xie, Shutao & Li, Difan, 2022. "Energy, exergy and economic benefits deriving from LNG-fired power plant: Cold energy power generation combined with carbon dioxide capture," Renewable Energy, Elsevier, vol. 195(C), pages 214-229.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.
    2. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    3. Qi, Meng & Park, Jinwoo & Landon, Robert Stephen & Kim, Jeongdong & Liu, Yi & Moon, Il, 2022. "Continuous and flexible Renewable-Power-to-Methane via liquid CO2 energy storage: Revisiting the techno-economic potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    5. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    6. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    7. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    8. Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
    9. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    10. Choe, Changgwon & Cheon, Seunghyun & Kim, Heehyang & Lim, Hankwon, 2023. "Mitigating climate change for negative CO2 emission via syngas methanation: Techno-economic and life-cycle assessments of renewable methane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    11. Moioli, Emanuele & Schildhauer, Tilman, 2022. "Negative CO2 emissions from flexible biofuel synthesis: Concepts, potentials, technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Schlund, David & Theile, Philipp, 2021. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," EWI Working Papers 2021-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    13. Wu, Di & Wang, Dexin & Ramachandran, Thiagarajan & Holladay, Jamie, 2022. "A techno-economic assessment framework for hydrogen energy storage toward multiple energy delivery pathways and grid services," Energy, Elsevier, vol. 249(C).
    14. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    15. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    16. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    17. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    18. Dingenen, Fons & Verbruggen, Sammy W., 2021. "Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    19. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    20. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:132:y:2020:i:c:s1364032120303488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.