IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2381-d356014.html
   My bibliography  Save this article

Analyzing the Hydroelectricity Variability on Power Markets from a System Dynamics and Dynamic Systems Perspective: Seasonality and ENSO Phenomenon

Author

Listed:
  • José D. Morcillo

    (Facultad de Ingeniería y Tecnologías, Universidad de Monterrey, Monterrey 66238, Mexico
    These authors contributed equally to this work.)

  • Fabiola Angulo

    (Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia, Sede Manizales, Manizales 170003, Colombia
    These authors contributed equally to this work.)

  • Carlos J. Franco

    (Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050041, Colombia
    These authors contributed equally to this work.)

Abstract

In this paper, the variations in hydropower generation are addressed considering the seasonality and ENSO (El Niño-Southern Oscillation) episodes. The dynamic hypothesis and the stock-flow structure of the Colombian electricity market were analyzed. Moreover, its dynamic behavior was analyzed by using Dynamic Systems tools aimed at providing deep insight into the system. The MATLAB/Simulink model was used to evaluate the Colombian electricity market. Since we combine System Dynamics and Dynamic Systems, this methodology provides a novel insight and a deeper analysis compared with System Dynamics models and can be easily implemented by policymakers to suggest improvements in regulation or market structures. We also provide a detailed description of the Colombian electricity market dynamics under a broad range of demand growth rate scenarios inspired by the bifurcation and control theory of Dynamic Systems.

Suggested Citation

  • José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2020. "Analyzing the Hydroelectricity Variability on Power Markets from a System Dynamics and Dynamic Systems Perspective: Seasonality and ENSO Phenomenon," Energies, MDPI, vol. 13(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2381-:d:356014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2381/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2381/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zapata, Sebastian & Castaneda, Monica & Franco, Carlos Jaime & Dyner, Isaac, 2019. "Clean and secure power supply: A system dynamics based appraisal," Energy Policy, Elsevier, vol. 131(C), pages 9-21.
    2. Qudrat-Ullah, Hassan & Seong, Baek Seo, 2010. "How to do structural validity of a system dynamics type simulation model: The case of an energy policy model," Energy Policy, Elsevier, vol. 38(5), pages 2216-2224, May.
    3. Shuhui Ren & Xun Dou & Zhen Wang & Jun Wang & Xiangyan Wang, 2020. "Medium- and Long-Term Integrated Demand Response of Integrated Energy System Based on System Dynamics," Energies, MDPI, vol. 13(3), pages 1-24, February.
    4. Isaac Dyner, 2000. "Energy modelling platforms for policy and strategy support," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(2), pages 136-144, February.
    5. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    6. Odeh, Rodrigo Pérez & Watts, David, 2019. "Impacts of wind and solar spatial diversification on its market value: A case study of the Chilean electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 442-461.
    7. Morcillo, José D. & Franco, Carlos J. & Angulo, Fabiola, 2018. "Simulation of demand growth scenarios in the Colombian electricity market: An integration of system dynamics and dynamic systems," Applied Energy, Elsevier, vol. 216(C), pages 504-520.
    8. Teufel, Felix & Miller, Michael & Genoese, Massimo & Fichtner, Wolf, 2013. "Review of System Dynamics models for electricity market simulations," Working Paper Series in Production and Energy 2, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    9. Martin L. Weitzman, 1974. "Prices vs. Quantities," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(4), pages 477-491.
    10. David C. Nelson, 1965. "A Study of the Elasticity of Demand for Electricity by Residential Consumers: Sample Markets in Nebraska," Land Economics, University of Wisconsin Press, vol. 41(1), pages 92-96.
    11. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
    2. Marlene A. Perez-Villalpando & Kelly J. Gurubel Tun & Carlos A. Arellano-Muro & Fernando Fausto, 2021. "Inverse Optimal Control Using Metaheuristics of Hydropower Plant Model via Forecasting Based on the Feature Engineering," Energies, MDPI, vol. 14(21), pages 1-18, November.
    3. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2021. "Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study," Mathematics, MDPI, vol. 9(13), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2021. "Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study," Mathematics, MDPI, vol. 9(13), pages 1-26, July.
    2. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    3. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    4. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.
    5. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2020. "Benefits from energy policy synchronisation of Brazil’s North-Northeast interconnection," Renewable Energy, Elsevier, vol. 162(C), pages 427-437.
    6. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    7. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).
    8. Ibanez-Lopez, A.S. & Moratilla-Soria, B.Y., 2017. "An assessment of Spain's new alternative energy support framework and its long-term impact on wind power development and system costs through behavioral dynamic simulation," Energy, Elsevier, vol. 138(C), pages 629-646.
    9. Julieth Stefany Garcia & Laura Milena Cárdenas & Jose Daniel Morcillo & Carlos Jaime Franco, 2024. "Policy Assessment for Energy Transition to Zero- and Low-Emission Technologies in Pickup Trucks: Evidence from Mexico," Energies, MDPI, vol. 17(10), pages 1-27, May.
    10. Henao, Felipe & Dyner, Isaac, 2020. "Renewables in the optimal expansion of colombian power considering the Hidroituango crisis," Renewable Energy, Elsevier, vol. 158(C), pages 612-627.
    11. Edward G. Anderson & David R. Keith & Jose Lopez, 2023. "Opportunities for system dynamics research in operations management for public policy," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1895-1920, June.
    12. Ibanez-Lopez, A.S. & Martinez-Val, J.M. & Moratilla-Soria, B.Y., 2017. "A dynamic simulation model for assessing the overall impact of incentive policies on power system reliability, costs and environment," Energy Policy, Elsevier, vol. 102(C), pages 170-188.
    13. Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
    14. Fankhauser, Samuel & Hepburn, Cameron, 2010. "Designing carbon markets. Part I: Carbon markets in time," Energy Policy, Elsevier, vol. 38(8), pages 4363-4370, August.
    15. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    16. Evan F. Koenig, 1985. "Indirect Methods for Regulating Externalities Under Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 100(2), pages 479-493.
    17. Wallace E. Oates, 1990. "Economics, Economists, and Environmental Policy," Eastern Economic Journal, Eastern Economic Association, vol. 16(4), pages 289-296, Oct-Dec.
    18. Inés Macho-Stadler, 2008. "Environmental regulation: choice of instruments under imperfect compliance," Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(1), pages 1-21, March.
    19. de la Croix, David & Gosseries, Axel, 2012. "The natalist bias of pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 271-287.
    20. Markus Reisinger & Ludwig Ressner, 2006. "The Choice of Prices vs. Quantities under Uncertainty," Working Papers 007, Bavarian Graduate Program in Economics (BGPE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2381-:d:356014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.