IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v143y2021ics1364032121001787.html
   My bibliography  Save this article

Impact of demand response on escalating energy access with affordable solar photovoltaic generation in the Global South

Author

Listed:
  • Ray, Manojit
  • Chakraborty, Basab

Abstract

Globally, three-quarter of a billion people live without electricity. Besides, hundreds of million use a solar lantern for less than 4 h a day. Most of the access-deprived are in the Global South, predominantly in Sub-Saharan Africa and South Asia. The United Nations framed the seventh Sustainable Development Goal to improve access. Solar photovoltaic powered mini-grids are increasingly extending better service to deprived regions. However, poor load-factor and expensive storage adversely affect viability. Also, these mini-grids do not support infrequent large loads to avoid further loss of load-factor. Electric cooking is efficient and non-polluting; water treatment facilities can save millions from contaminant and pathogen by providing clean water. Besides, both electric cooking and water treatment are less expensive than alternatives. But mini-grids frequently do not support these. Indeed, the presence of sustained productive loads favourably influences the mini-grid economy. This study investigates the role of critical household loads to deliver similar bearing on the mini-grid economy. Results underscore realisation of desirable impact with household collaboration under a demand-response program. Collaborative consumption can lower initial investment by 62% and reduce the unit energy cost to $0.23. Also, cooperation improves the mini-grid load factor and promotes viability. Additionally, fast deployment needs during and after Covid-19 remains inherently supported while mitigating the pandemic induced financial stress of both consumer and mini-grid operator. This study of 88 nation-states underscores that demand response in a mini-grid can not only improve affordability for all consumers, but it can also bring 186 million people within affordable access.

Suggested Citation

  • Ray, Manojit & Chakraborty, Basab, 2021. "Impact of demand response on escalating energy access with affordable solar photovoltaic generation in the Global South," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121001787
    DOI: 10.1016/j.rser.2021.110884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121001787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Bertrand Moingeon & Muhammad Yunus & Laurence Lehmann-Ortega, 2010. "Building Social Business Models: Lessons from the Grameen Experience," Post-Print hal-00528385, HAL.
    3. Masako Numata & Masahiro Sugiyama & Gento Mogi, 2020. "Barrier Analysis for the Deployment of Renewable-Based Mini-Grids in Myanmar Using the Analytic Hierarchy Process (AHP)," Energies, MDPI, vol. 13(6), pages 1-16, March.
    4. Aldersey-Williams, J. & Rubert, T., 2019. "Levelised cost of energy – A theoretical justification and critical assessment," Energy Policy, Elsevier, vol. 124(C), pages 169-179.
    5. Peter Ozaveshe Oviroh & Tien-Chien Jen, 2018. "The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria," Energies, MDPI, vol. 11(3), pages 1-20, March.
    6. Gude, Veera Gnaneswar & Nirmalakhandan, Nagamany & Deng, Shuguang, 2010. "Renewable and sustainable approaches for desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2641-2654, December.
    7. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    8. Banerjee,Abhijit & La Ferrara,Eliana & Orozco Olvera,Victor Hugo, 2019. "The Entertaining Way to Behavioral Change : Fighting HIV with MTV," Policy Research Working Paper Series 8998, The World Bank.
    9. Wang, Yubo & Song, Zhen & De Angelis, Valerio & Srivastava, Sanjeev, 2018. "Battery life-cycle optimization and runtime control for commercial buildings demand side management: A New York City case study," Energy, Elsevier, vol. 165(PA), pages 782-791.
    10. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    11. Banerjee, Manjushree & Prasad, Rakesh & Rehman, Ibrahim H & Gill, Bigsna, 2016. "Induction stoves as an option for clean cooking in rural India," Energy Policy, Elsevier, vol. 88(C), pages 159-167.
    12. Peter Alstone & Dimitry Gershenson & Daniel M. Kammen, 2015. "Decentralized energy systems for clean electricity access," Nature Climate Change, Nature, vol. 5(4), pages 305-314, April.
    13. Lerman, Robert I. & Yitzhaki, Shlomo, 1984. "A note on the calculation and interpretation of the Gini index," Economics Letters, Elsevier, vol. 15(3-4), pages 363-368.
    14. Ramchandran, Neeraj & Pai, Rajesh & Parihar, Amit Kumar Singh, 2016. "Feasibility assessment of Anchor-Business-Community model for off-grid rural electrification in India," Renewable Energy, Elsevier, vol. 97(C), pages 197-209.
    15. Laurence L. Delina, 2020. "A rural energy collaboratory: co-production in Thailand’s community energy experiments," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 10(1), pages 83-90, March.
    16. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    17. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    18. Blankenship, Brian & Kennedy, Ryan & Mahajan, Aseem & Wong, Jason Chun Yu & Urpelainen, Johannes, 2020. "Increasing rural electrification through connection campaigns," Energy Policy, Elsevier, vol. 139(C).
    19. Arrow, K. & Cropper, M. & Gollier, C. & Groom, B. & Heal, G. & Newell, R. & Nordhaus, W. & Pindyck, R. & Pizer, W. & Portney, P. & Sterner, T. & Tol, R. S. J. & Weitzman, Martin L., 2013. "Determining Benefits and Costs for Future Generations," Scholarly Articles 12841963, Harvard University Department of Economics.
    20. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    2. Carlos Cacciuttolo & Valentina Guzmán & Patricio Catriñir, 2024. "Renewable Solar Energy Facilities in South America—The Road to a Low-Carbon Sustainable Energy Matrix: A Systematic Review," Energies, MDPI, vol. 17(22), pages 1-50, November.
    3. Kuczynski, Waldemar & Chliszcz, Katarzyna, 2023. "Energy and exergy analysis of photovoltaic panels in northern Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adesanya, Adewale A. & Pearce, Joshua M., 2019. "Economic viability of captive off-grid solar photovoltaic and diesel hybrid energy systems for the Nigerian private sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    3. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    4. Joanna Wyrobek & Łukasz Popławski & Maria Dzikuć, 2021. "Analysis of Financial Problems of Wind Farms in Poland," Energies, MDPI, vol. 14(5), pages 1-28, February.
    5. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    6. Yuan, Mei-Hua & Lo, Shang-Lien, 2022. "Principles of food-energy-water nexus governance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    8. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Yu, Hyun Jin Julie, 2017. "Virtuous cycle of solar photovoltaic development in new regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1357-1366.
    10. Mutanga, Shingirirai S. & Quitzow, Rainer & Steckel, Jan Christoph, 2018. "Tackling energy, climate and development challenges in Africa," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-14.
    11. Wang, Yunfei & Li, Jinke & O'Leary, Nigel & Shao, Jing, 2024. "Banding: A game changer in the Renewables Obligation scheme in the United Kingdom," Energy Economics, Elsevier, vol. 130(C).
    12. Sanghyun Sung & Wooyong Jung, 2019. "Economic Competitiveness Evaluation of the Energy Sources: Comparison between a Financial Model and Levelized Cost of Electricity Analysis," Energies, MDPI, vol. 12(21), pages 1-21, October.
    13. Ujjayant Chakravorty & Ridhima Gupta & Martino Pelli, 2022. "The economics of rural energy use in developing countries," CIRANO Working Papers 2022s-12, CIRANO.
    14. Jain, Anjali & Das, Partha & Yamujala, Sumanth & Bhakar, Rohit & Mathur, Jyotirmay, 2020. "Resource potential and variability assessment of solar and wind energy in India," Energy, Elsevier, vol. 211(C).
    15. Hepburn, Cameron & Mealy, Penny, 2017. "Transformational Change: Parallels for addressing climate and development goals," INET Oxford Working Papers 2019-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2019.
    16. Mutanga, Shingirirai Savious & Quitzow, Rainer & Steckel, Jan Christoph, 2018. "Improving quality of life through sustainable energy and urban infrastructure in Africa," Economics Discussion Papers 2018-15, Kiel Institute for the World Economy (IfW Kiel).
    17. Afentoulis, Konstantinos D. & Bampos, Zafeirios N. & Vagropoulos, Stylianos I. & Keranidis, Stratos D. & Biskas, Pantelis N., 2022. "Smart charging business model framework for electric vehicle aggregators," Applied Energy, Elsevier, vol. 328(C).
    18. Edwina Fingleton-Smith, 2022. "Smoke and mirrors—the complexities of cookstove adoption and use in Kenya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3926-3946, March.
    19. Cantele Silvia & Serena Truzzi, 2021. "Sustainable Business Models: Literature Review of Main Contributions and Themes," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(5), pages 1-11, July.
    20. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:143:y:2021:i:c:s1364032121001787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.