IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v100y2019icp52-70.html
   My bibliography  Save this article

Recent developments in sulphur-resilient catalytic systems for syngas production

Author

Listed:
  • Yeo, Tze Yuen
  • Ashok, Jangam
  • Kawi, Sibudjing

Abstract

The importance of sulphur resilience in hydrocarbon reforming systems cannot be overstated. Sulphur compounds can deactivate the reforming catalysts and complicate downstream separations, as well as lead to undesired side reactions that affect the overall performance of reforming. In this article, we review recent efforts in the development of sulphur-resistant catalysts, as well as process enhancements that help to prolong the operating lifetimes of conventional reforming catalysts. Here, we briefly look at the sulphur content of reforming feedstock materials, and also analyse the typical poisoning mechanisms to try to understand how to better prevent them. We then move on to consider various strategies that have been developed recently to impart sulphur resilience, including changing catalyst compositions, engineering catalyst designs, feedstock pre-treatment, and reaction design and integration to improve reforming performance. Finally, we look at some possible directions moving forward, where sulphur compounds are treated not as a nuisance to be dealt with, but as a valuable reactant that can help to produce valuable materials for clean energy generation.

Suggested Citation

  • Yeo, Tze Yuen & Ashok, Jangam & Kawi, Sibudjing, 2019. "Recent developments in sulphur-resilient catalytic systems for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 52-70.
  • Handle: RePEc:eee:rensus:v:100:y:2019:i:c:p:52-70
    DOI: 10.1016/j.rser.2018.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118307202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giarola, Sara & Forte, Ornella & Lanzini, Andrea & Gandiglio, Marta & Santarelli, Massimo & Hawkes, Adam, 2018. "Techno-economic assessment of biogas-fed solid oxide fuel cell combined heat and power system at industrial scale," Applied Energy, Elsevier, vol. 211(C), pages 689-704.
    2. Neal, Luke & Shafiefarhood, Arya & Li, Fanxing, 2015. "Effect of core and shell compositions on MeOx@LaySr1−yFeO3 core–shell redox catalysts for chemical looping reforming of methane," Applied Energy, Elsevier, vol. 157(C), pages 391-398.
    3. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2016. "Recent advances in catalytic oxidation and reformation of jet fuels," Applied Energy, Elsevier, vol. 165(C), pages 904-918.
    4. Wang, Na & Chen, Dezhen & Arena, Umberto & He, Pinjing, 2017. "Hot char-catalytic reforming of volatiles from MSW pyrolysis," Applied Energy, Elsevier, vol. 191(C), pages 111-124.
    5. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    6. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    7. Yang, Xia, 2017. "An experimental investigation on the deactivation and regeneration of a steam reforming catalyst," Renewable Energy, Elsevier, vol. 112(C), pages 17-24.
    8. Rhyner, Urs & Edinger, Philip & Schildhauer, Tilman J. & Biollaz, Serge M.A., 2014. "Applied kinetics for modeling of reactive hot gas filters," Applied Energy, Elsevier, vol. 113(C), pages 766-780.
    9. Papurello, D. & Borchiellini, R. & Bareschino, P. & Chiodo, V. & Freni, S. & Lanzini, A. & Pepe, F. & Ortigoza, G.A. & Santarelli, M, 2014. "Performance of a Solid Oxide Fuel Cell short-stack with biogas feeding," Applied Energy, Elsevier, vol. 125(C), pages 254-263.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bian, Zhoufeng & Wang, Zhigang & Jiang, Bo & Hongmanorom, Plaifa & Zhong, Wenqi & Kawi, Sibudjing, 2020. "A review on perovskite catalysts for reforming of methane to hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Fu-Xiang & Yang, Guo-Hua & Ding, Guo-Zhu & Li, Zhen & Du, Ka-Shuai & Hu, Zhi-Fa & Tian, Su-Rui, 2016. "Experimental study on catalytic cracking of model tar compounds in a dual layer granular bed filter," Applied Energy, Elsevier, vol. 170(C), pages 47-57.
    2. Habibollahzade, Ali & Gholamian, Ehsan & Behzadi, Amirmohammad, 2019. "Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents," Applied Energy, Elsevier, vol. 233, pages 985-1002.
    3. Costas Athanasiou & Christos Drosakis & Gaylord Kabongo Booto & Costas Elmasides, 2022. "Economic Feasibility of Power/Heat Cogeneration by Biogas–Solid Oxide Fuel Cell (SOFC) Integrated Systems," Energies, MDPI, vol. 16(1), pages 1-30, December.
    4. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    6. Papurello, Davide & Lanzini, Andrea & Drago, Davide & Leone, Pierluigi & Santarelli, Massimo, 2016. "Limiting factors for planar solid oxide fuel cells under different trace compound concentrations," Energy, Elsevier, vol. 95(C), pages 67-78.
    7. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    8. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    9. Guoliang Zhang & Suhua Lou & Yaowu Wu & Yang Wu & Xiangfeng Wen, 2020. "A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas," Energies, MDPI, vol. 13(24), pages 1-13, December.
    10. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    11. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Bedoić, Robert & Dorotić, Hrvoje & Schneider, Daniel Rolph & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2021. "Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant," Renewable Energy, Elsevier, vol. 173(C), pages 12-23.
    13. Ding, Xiaoyi & Lv, Xiaojing & Weng, Yiwu, 2019. "Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system," Applied Energy, Elsevier, vol. 254(C).
    14. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    15. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    16. Cheng, Yoke Wang & Khan, Maksudur R. & Ng, Kim Hoong & Wongsakulphasatch, Suwimol & Cheng, Chin Kui, 2019. "Harnessing renewable hydrogen-rich syngas from valorization of palm oil mill effluent (POME) using steam reforming technique," Renewable Energy, Elsevier, vol. 138(C), pages 1114-1126.
    17. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    18. Hafizi, A. & Rahimpour, M.R. & Hassanajili, Sh., 2016. "Hydrogen production via chemical looping steam methane reforming process: Effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier," Applied Energy, Elsevier, vol. 165(C), pages 685-694.
    19. Buentello-Montoya, D.A. & Zhang, X. & Li, J., 2019. "The use of gasification solid products as catalysts for tar reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 399-412.
    20. Silva-Mosqueda, Dulce María & Elizalde-Blancas, Francisco & Pumiglia, Davide & Santoni, Francesca & Boigues-Muñoz, Carlos & McPhail, Stephen J., 2019. "Intermediate temperature solid oxide fuel cell under internal reforming: Critical operating conditions, associated problems and their impact on the performance," Applied Energy, Elsevier, vol. 235(C), pages 625-640.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:100:y:2019:i:c:p:52-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.