IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp398-409.html
   My bibliography  Save this article

Assessment of wave energy potential and its harvesting approach along the Indian coast

Author

Listed:
  • Sannasiraj, S.A.
  • Sundar, V.

Abstract

The present scenario of energy market is highly volatile due to large oscillation in the fossil fuel prices. During these periods, the high energy demand for the industries is being partially met through non-conventional energy sources such as wind and solar power. The large untapped energy potential in the Ocean is yet to be exploited due to many technological constraints. The recent decades have shown positive developments worldwide towards the ocean wave energy converters. In the present study, an improved wave energy potential estimate has been made. Based on various parameters such as physical site characteristics, environmental conditions and socio-economic regional state, the selection criteria have been suggested. This would form the basis for energy device selection for the decision makers.

Suggested Citation

  • Sannasiraj, S.A. & Sundar, V., 2016. "Assessment of wave energy potential and its harvesting approach along the Indian coast," Renewable Energy, Elsevier, vol. 99(C), pages 398-409.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:398-409
    DOI: 10.1016/j.renene.2016.07.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306139
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rao, T.V.S.Narasimha & Sundar, V., 1982. "Estimation of wave power potential along the Indian coastline," Energy, Elsevier, vol. 7(10), pages 839-845.
    2. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahareh Kamranzad & George Lavidas & Kaoru Takara, 2020. "Spatio-Temporal Assessment of Climate Change Impact on Wave Energy Resources Using Various Time Dependent Criteria," Energies, MDPI, vol. 13(3), pages 1-12, February.
    2. Sánchez, Antonio Santos & Rodrigues, Diego Arruda & Fontes, Raony Maia & Martins, Márcio Fernandes & Kalid, Ricardo de Araújo & Torres, Ednildo Andrade, 2018. "Wave resource characterization through in-situ measurement followed by artificial neural networks' modeling," Renewable Energy, Elsevier, vol. 115(C), pages 1055-1066.
    3. Das, Tapas K. & Kumar, Kumud & Samad, Abdus, 2020. "Experimental Analysis of a Biplane Wells Turbine under Different Load Conditions," Energy, Elsevier, vol. 206(C).
    4. Karunarathna, Harshinie & Maduwantha, Pravin & Kamranzad, Bahareh & Rathnasooriya, Harsha & de Silva, Kasun, 2020. "Evaluation of spatio-temporal variability of ocean wave power resource around Sri Lanka," Energy, Elsevier, vol. 200(C).
    5. Ayob, Mohd Nasir & Castellucci, Valeria & Waters, Rafael, 2017. "Wave energy potential and 1–50 TWh scenarios for the Nordic synchronous grid," Renewable Energy, Elsevier, vol. 101(C), pages 462-466.
    6. Medina Rodríguez, Ayrton Alfonso & Trivedi, Kshma & Koley, Santanu & Oderiz Martinez, Itxaso & Mendoza, Edgar & Posada Vanegas, Gregorio & Silva, Rodolfo, 2023. "Improved hydrodynamic performance of an OWC device based on a Helmholtz resonator," Energy, Elsevier, vol. 273(C).
    7. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    8. Calheiros-Cabral, Tomás & Clemente, Daniel & Rosa-Santos, Paulo & Taveira-Pinto, Francisco & Ramos, Victor & Morais, Tiago & Cestaro, Henrique, 2020. "Evaluation of the annual electricity production of a hybrid breakwater-integrated wave energy converter," Energy, Elsevier, vol. 213(C).
    9. M. M. Amrutha & V. Sanil Kumar, 2019. "Changes in Wave Energy in the Shelf Seas of India during the Last 40 Years Based on ERA5 Reanalysis Data," Energies, MDPI, vol. 13(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    2. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    3. Rusu, Eugen & Guedes Soares, C., 2009. "Numerical modelling to estimate the spatial distribution of the wave energy in the Portuguese nearshore," Renewable Energy, Elsevier, vol. 34(6), pages 1501-1516.
    4. van Nieuwkoop, Joana C.C. & Smith, Helen C.M. & Smith, George H. & Johanning, Lars, 2013. "Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements," Renewable Energy, Elsevier, vol. 58(C), pages 1-14.
    5. Lisboa, Rodrigo C. & Teixeira, Paulo R.F. & Torres, Fernando R. & Didier, Eric, 2018. "Numerical evaluation of the power output of an oscillating water column wave energy converter installed in the southern Brazilian coast," Energy, Elsevier, vol. 162(C), pages 1115-1124.
    6. Leijon, Mats & Skoglund, Annika & Waters, Rafael & Rehn, Alf & Lindahl, Marcus, 2010. "On the physics of power, energy and economics of renewable electric energy sources – Part I," Renewable Energy, Elsevier, vol. 35(8), pages 1729-1734.
    7. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Wang, Zhifeng & Dong, Sheng & Li, Xue & Guedes Soares, C., 2016. "Assessments of wave energy in the Bohai Sea, China," Renewable Energy, Elsevier, vol. 90(C), pages 145-156.
    9. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    10. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    11. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    12. Amarouche, Khalid & Akpınar, Adem & Bachari, Nour El Islam & Houma, Fouzia, 2020. "Wave energy resource assessment along the Algerian coast based on 39-year wave hindcast," Renewable Energy, Elsevier, vol. 153(C), pages 840-860.
    13. Behrens, Sam & Hayward, Jennifer & Hemer, Mark & Osman, Peter, 2012. "Assessing the wave energy converter potential for Australian coastal regions," Renewable Energy, Elsevier, vol. 43(C), pages 210-217.
    14. Xu, Zhe & Zheng, Yuan & Kan, Kan & Chen, Huixiang, 2023. "Flow instability and energy performance of a coastal axial-flow pump as turbine under the influence of upstream waves," Energy, Elsevier, vol. 272(C).
    15. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    16. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    17. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    18. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    19. Zhang, Haicheng & Xi, Ru & Xu, Daolin & Wang, Kai & Shi, Qijia & Zhao, Huai & Wu, Bo, 2019. "Efficiency enhancement of a point wave energy converter with a magnetic bistable mechanism," Energy, Elsevier, vol. 181(C), pages 1152-1165.
    20. Mahboubidoust, A. & Ramiar, A., 2017. "Investigation of DBD plasma actuator effect on the aerodynamic and thermodynamic performance of high solidity Wells turbine," Renewable Energy, Elsevier, vol. 112(C), pages 347-364.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:398-409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.