IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p768-d318645.html
   My bibliography  Save this article

Spatio-Temporal Assessment of Climate Change Impact on Wave Energy Resources Using Various Time Dependent Criteria

Author

Listed:
  • Bahareh Kamranzad

    (The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
    Graduate School of Advanced Integrated Studies in Human Survivability (GSAIS), Kyoto University, Kyoto 606-8306, Japan)

  • George Lavidas

    (Faculty of Maritime, Mechanical & Materials Engineering, Delft University of Technology, 2600 AA Delft, The Netherlands)

  • Kaoru Takara

    (Graduate School of Advanced Integrated Studies in Human Survivability (GSAIS), Kyoto University, Kyoto 606-8306, Japan)

Abstract

The wave energy resources in the Indian Ocean can be considered as a potential alternative to fossil fuels. However, the wave energy resources are subject to short-term fluctuations and long-term changes due to climate change. Hence, considering sustainable development goals, it is necessary to assess both short-term (intra-annual) variation and long-term change. For this purpose, the simulated wave characteristics were utilized, and the wave power and its variation and change were analyzed in the whole domain and nearshore areas. The short-term fluctuation was investigated in terms of monthly and seasonal variations and the future change was discussed based on absolute and relative changes. Both analyses show that the Southern Indian Ocean, despite experiencing extreme events and having higher wave energy potential, is more stable in terms of both short and long-term variation and change. The assessment of the total and exploitable storages of wave energy and their future change revealed the higher potential and higher stability of the nearshores of the Southern Indian Ocean. It can be concluded that based on various factors, the south of Sri Lanka, Horn of Africa, southeast Africa, south of Madagascar and Reunion and Mauritius islands are the most suitable areas for wave energy extraction.

Suggested Citation

  • Bahareh Kamranzad & George Lavidas & Kaoru Takara, 2020. "Spatio-Temporal Assessment of Climate Change Impact on Wave Energy Resources Using Various Time Dependent Criteria," Energies, MDPI, vol. 13(3), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:768-:d:318645
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2017. "Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf," Renewable Energy, Elsevier, vol. 114(PA), pages 59-71.
    2. Aboobacker, V.M. & Shanas, P.R. & Alsaafani, M.A. & Albarakati, Alaa M.A., 2017. "Wave energy resource assessment for Red Sea," Renewable Energy, Elsevier, vol. 114(PA), pages 46-58.
    3. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    4. Sannasiraj, S.A. & Sundar, V., 2016. "Assessment of wave energy potential and its harvesting approach along the Indian coast," Renewable Energy, Elsevier, vol. 99(C), pages 398-409.
    5. Mahmoodi, Kumars & Ghassemi, Hassan & Razminia, Abolhassan, 2019. "Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset," Energy, Elsevier, vol. 187(C).
    6. Zhou, Guoqing & Huang, Jingjin & Yue, Tao & Luo, Qingli & Zhang, Guangyun, 2015. "Temporal-spatial distribution of wave energy: A case study of Beibu Gulf, China," Renewable Energy, Elsevier, vol. 74(C), pages 344-356.
    7. Abbaspour, M. & Rahimi, R., 2011. "Iran atlas of offshore renewable energies," Renewable Energy, Elsevier, vol. 36(1), pages 388-398.
    8. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    9. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    10. Aboobacker, V.M., 2017. "Wave energy resource assessment for eastern Bay of Bengal and Malacca Strait," Renewable Energy, Elsevier, vol. 114(PA), pages 72-84.
    11. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    12. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.
    13. Yong Wan & Chenqing Fan & Jie Zhang & Junmin Meng & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Jing Wang & Xudong Zhang, 2017. "Wave Energy Resource Assessment off the Coast of China around the Zhoushan Islands," Energies, MDPI, vol. 10(9), pages 1-25, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eugen Rusu, 2022. "Marine Renewable Energy: An Important Direction in Taking the Green Road towards a Low Carbon Future," Energies, MDPI, vol. 15(15), pages 1-3, July.
    2. Uti, Mat Nizam & Md Din, Ami Hassan & Yusof, Norhakim & Yaakob, Omar, 2023. "A spatial-temporal clustering for low ocean renewable energy resources using K-means clustering," Renewable Energy, Elsevier, vol. 219(P2).
    3. Harshinie Karunarathna & Pravin Maduwantha & Bahareh Kamranzad & Harsha Rathnasooriya & Kasun De Silva, 2020. "Impacts of Global Climate Change on the Future Ocean Wave Power Potential: A Case Study from the Indian Ocean," Energies, MDPI, vol. 13(11), pages 1-22, June.
    4. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    5. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).
    6. Meenakshi Shankar Poti & Jean Huge & Kartik Shanker & Nico Koedam & Farid Dahdouh-Guebas, 2022. "Learning from small islands in the Western Indian Ocean (WIO): A systematic review of responses to environmental change," ULB Institutional Repository 2013/346937, ULB -- Universite Libre de Bruxelles.
    7. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.
    2. Karunarathna, Harshinie & Maduwantha, Pravin & Kamranzad, Bahareh & Rathnasooriya, Harsha & de Silva, Kasun, 2020. "Evaluation of spatio-temporal variability of ocean wave power resource around Sri Lanka," Energy, Elsevier, vol. 200(C).
    3. Mahmoodi, Kumars & Ghassemi, Hassan & Razminia, Abolhassan, 2019. "Temporal and spatial characteristics of wave energy in the Persian Gulf based on the ERA5 reanalysis dataset," Energy, Elsevier, vol. 187(C).
    4. Kamranzad, Bahareh & Takara, Kaoru, 2020. "A climate-dependent sustainability index for wave energy resources in Northeast Asia," Energy, Elsevier, vol. 209(C).
    5. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).
    6. Addy Wahyudie & Tri Bagus Susilo & Fatima Alaryani & Cuk Supriyadi Ali Nandar & Mohammed Abdi Jama & Abdulrahman Daher & Hussain Shareef, 2020. "Wave Power Assessment in the Middle Part of the Southern Coast of Java Island," Energies, MDPI, vol. 13(10), pages 1-19, May.
    7. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2016. "Sustainability of wave energy resources in southern Caspian Sea," Energy, Elsevier, vol. 97(C), pages 549-559.
    8. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Bingölbali, Bilal & Jafali, Halid & Akpınar, Adem & Bekiroğlu, Serkan, 2020. "Wave energy potential and variability for the south west coasts of the Black Sea: The WEB-based wave energy atlas," Renewable Energy, Elsevier, vol. 154(C), pages 136-150.
    10. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    11. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    12. Andrea Farkas & Nastia Degiuli & Ivana Martić, 2019. "Assessment of Offshore Wave Energy Potential in the Croatian Part of the Adriatic Sea and Comparison with Wind Energy Potential," Energies, MDPI, vol. 12(12), pages 1-20, June.
    13. Mahmoodi, Kumars & Ghassemi, Hassan & Razminia, Abolhassan, 2020. "Performance assessment of a two-body wave energy converter based on the Persian Gulf wave climate," Renewable Energy, Elsevier, vol. 159(C), pages 519-537.
    14. Bingölbali, Bilal & Majidi, Ajab Gul & Akpınar, Adem, 2021. "Inter- and intra-annual wave energy resource assessment in the south-western Black Sea coast," Renewable Energy, Elsevier, vol. 169(C), pages 809-819.
    15. Amirinia, Gholamreza & Kamranzad, Bahareh & Mafi, Somayeh, 2017. "Wind and wave energy potential in southern Caspian Sea using uncertainty analysis," Energy, Elsevier, vol. 120(C), pages 332-345.
    16. Vieira, Filipe & Cavalcante, Georgenes & Campos, Edmo & Taveira-Pinto, Francisco, 2020. "Wave energy flux variability and trend along the United Arab Emirates coastline based on a 40-year hindcast," Renewable Energy, Elsevier, vol. 160(C), pages 1194-1205.
    17. Wan, Yong & Zheng, Chongwei & Li, Ligang & Dai, Yongshou & Esteban, M. Dolores & López-Gutiérrez, José-Santos & Qu, Xiaojun & Zhang, Xiaoyu, 2020. "Wave energy assessment related to wave energy convertors in the coastal waters of China," Energy, Elsevier, vol. 202(C).
    18. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    19. Kamranzad, Bahareh & Chegini, Vahid & Etemad-Shahidi, Amir, 2016. "Temporal-spatial variation of wave energy and nearshore hotspots in the Gulf of Oman based on locally generated wind waves," Renewable Energy, Elsevier, vol. 94(C), pages 341-352.
    20. Kamranzad, Bahareh & Etemad-Shahidi, Amir & Chegini, Vahid, 2017. "Developing an optimum hotspot identifier for wave energy extracting in the northern Persian Gulf," Renewable Energy, Elsevier, vol. 114(PA), pages 59-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:768-:d:318645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.