IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp390-397.html
   My bibliography  Save this article

Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil

Author

Listed:
  • Guo, Qiang
  • Zhou, Lingjiu
  • Wang, Zhengwei

Abstract

The blade tip leakage flow with efficiency losses and cavitation phenomena is a concern for the low-head tidal power units. A simplified case of NACA0009 hydrofoil in a water tunnel is used to investigate the effects of tip clearance geometries including the foil tip shape and gap width on the flow features and foil performance. Steady non-cavitating simulations are implemented for a round tip foil and a sharp tip foil with two incidence angles (α = 10° and 5°) and different normalized gap width (τ). The minimum pressure is used to reflect the normalized vortex intensity (Γ*) and cavitation characteristics. The Γ*-τ curves at different streamwise positions show that the sharp tip foil generates relatively weaker tip leakage vortex with more flat curves, but its higher Γ* of tip separation vortex in wider gaps increases the risk of clearance cavitation. The flow features on a cross section inside the gap suggest that the sharp tip reduces the leakage flow losses and increases the velocity gradient due to the boundary layer separation. The lift coefficient is a little higher for the sharp tip foil than the round tip foil, with small differences for α = 5° but noticeable deviations for α = 10° especially within 0.3<τ < 1.

Suggested Citation

  • Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2016. "Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil," Renewable Energy, Elsevier, vol. 99(C), pages 390-397.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:390-397
    DOI: 10.1016/j.renene.2016.06.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630595X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.06.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Charlier, Roger H., 2007. "Forty candles for the Rance River TPP tides provide renewable and sustainable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2032-2057, December.
    2. Luo, Yongyao & Wang, Zhengwei & Liu, Xin & Xiao, Yexiang & Chen, Changkun & Wang, Haoping & Yan, Jianhua, 2015. "Numerical prediction of pressure pulsation for a low head bidirectional tidal bulb turbine," Energy, Elsevier, vol. 89(C), pages 730-738.
    3. Gao, Jie & Zheng, Qun & Zhang, Zhengyi & Jiang, Yuting, 2014. "Aero-thermal performance improvements of unshrouded turbines through management of tip leakage and injection flows," Energy, Elsevier, vol. 69(C), pages 648-660.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenwei Huang & Yadong Han & Lei Tan & Chuibing Huang, 2019. "Influence of T-Shape Tip Clearance on Energy Performance and Broadband Noise for a NACA0009 Hydrofoil," Energies, MDPI, vol. 12(21), pages 1-13, October.
    2. Liu, Yabin & Tan, Lei, 2018. "Tip clearance on pressure fluctuation intensity and vortex characteristic of a mixed flow pump as turbine at pump mode," Renewable Energy, Elsevier, vol. 129(PA), pages 606-615.
    3. Liu, Yabin & Tan, Lei, 2020. "Method of T shape tip on energy improvement of a hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 149(C), pages 42-54.
    4. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    5. Chen, Weisheng & Xiang, Qiujie & Li, Yaojun & Liu, Zhuqing, 2023. "On the mechanisms of pressure drop and viscous losses in hydrofoil tip-clearance flows," Energy, Elsevier, vol. 269(C).
    6. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    7. Wang, Like & Feng, Jianjun & Lu, Jinling & Zhu, Guojun & Wang, Wei, 2024. "Novel bionic wave-shaped tip clearance toward improving hydrofoil energy performance and suppressing tip leakage vortex," Energy, Elsevier, vol. 290(C).
    8. Shamsuddeen, Mohamed Murshid & Park, Jungwan & Choi, Young-Seok & Kim, Jin-Hyuk, 2020. "Unsteady multi-phase cavitation analysis on the effect of anti-cavity fin installed on a Kaplan turbine runner," Renewable Energy, Elsevier, vol. 162(C), pages 861-876.
    9. Zhang, Mengjie & Huang, Biao & Wu, Qin & Zhang, Mindi & Wang, Guoyu, 2020. "The interaction between the transient cavitating flow and hydrodynamic performance around a pitching hydrofoil," Renewable Energy, Elsevier, vol. 161(C), pages 1276-1291.
    10. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    11. Liu, Yabin & Han, Yadong & Tan, Lei & Wang, Yuming, 2020. "Blade rotation angle on energy performance and tip leakage vortex in a mixed flow pump as turbine at pump mode," Energy, Elsevier, vol. 206(C).
    12. Kan, Kan & Binama, Maxime & Chen, Huixiang & Zheng, Yuan & Zhou, Daqing & Su, Wentao & Muhirwa, Alexis, 2022. "Pump as turbine cavitation performance for both conventional and reverse operating modes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Han, Yadong & Liu, Yabin & Tan, Lei, 2022. "Method of variable-depth groove on vortex and cavitation suppression for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 199(C), pages 546-559.
    14. Ahn, Soo-Hwang & Zhou, Xuezhi & He, Lingyan & Luo, Yongyao & Wang, Zhengwei, 2020. "Numerical estimation of prototype hydraulic efficiency in a low head power station based on gross head conditions," Renewable Energy, Elsevier, vol. 153(C), pages 175-181.
    15. Liu, Yabin & Tan, Lei, 2018. "Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy," Energy, Elsevier, vol. 155(C), pages 448-461.
    16. Yabin Liu & Lei Tan & Binbin Wang, 2018. "A Review of Tip Clearance in Propeller, Pump and Turbine," Energies, MDPI, vol. 11(9), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    2. Gao, Jie & Zheng, Qun & Jia, Xiaoquan, 2014. "Performance improvement of shrouded turbines with the management of casing endwall interaction flows," Energy, Elsevier, vol. 75(C), pages 430-442.
    3. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Wang, Zhengwei & Luo, Yongyao & Luo, Kun, 2020. "Energy conversion characteristics of multiphase pump impeller analyzed based on blade load spectra," Renewable Energy, Elsevier, vol. 157(C), pages 9-23.
    4. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    5. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    6. Ye, Xuemin & Li, Pengmin & Li, Chunxi & Ding, Xueliang, 2015. "Numerical investigation of blade tip grooving effect on performance and dynamics of an axial flow fan," Energy, Elsevier, vol. 82(C), pages 556-569.
    7. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    8. Grabbe, Mårten & Lalander, Emilia & Lundin, Staffan & Leijon, Mats, 2009. "A review of the tidal current energy resource in Norway," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1898-1909, October.
    9. Gabl, Roman & Innerhofer, Daniel & Achleitner, Stefan & Righetti, Maurizio & Aufleger, Markus, 2018. "Evaluation criteria for velocity distributions in front of bulb hydro turbines," Renewable Energy, Elsevier, vol. 121(C), pages 745-756.
    10. Mejia-Olivares, Carlos Joel & Haigh, Ivan D. & Angeloudis, Athanasios & Lewis, Matt J. & Neill, Simon P., 2020. "Tidal range energy resource assessment of the Gulf of California, Mexico," Renewable Energy, Elsevier, vol. 155(C), pages 469-483.
    11. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    12. Gao, Jie & Zheng, Qun & Xu, Tianbang & Dong, Ping, 2015. "Inlet conditions effect on tip leakage vortex breakdown in unshrouded axial turbines," Energy, Elsevier, vol. 91(C), pages 255-263.
    13. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.
    14. Martí Barclay, Vicky & Neill, Simon P. & Angeloudis, Athanasios, 2023. "Tidal range resource of the Patagonian shelf," Renewable Energy, Elsevier, vol. 209(C), pages 85-96.
    15. Zou, Zhengping & Shao, Fei & Li, Yiran & Zhang, Weihao & Berglund, Albin, 2017. "Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance," Energy, Elsevier, vol. 138(C), pages 167-184.
    16. Yongyao Luo & Xin Liu & Zhengwei Wang & Yexiang Xiao & Chenglian He & Yiyang Zhang, 2017. "Optimization of the Runner for Extremely Low Head Bidirectional Tidal Bulb Turbine," Energies, MDPI, vol. 10(6), pages 1-13, June.
    17. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    18. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Numerical prediction on the effect of free surface vortex on intake flow characteristics for tidal power station," Renewable Energy, Elsevier, vol. 101(C), pages 617-628.
    19. Linghua Kong & Jingwei Cao & Xiangyang Li & Xulei Zhou & Haihong Hu & Tao Wang & Shuxin Gui & Wenfa Lai & Zhongfeng Zhu & Zhengwei Wang & Yan Liu, 2022. "Numerical Analysis on the Hydraulic Thrust and Dynamic Response Characteristics of a Turbine Pump," Energies, MDPI, vol. 15(4), pages 1-15, February.
    20. Laurens, J.-M. & Ait-Mohammed, M. & Tarfaoui, M., 2016. "Design of bare and ducted axial marine current turbines," Renewable Energy, Elsevier, vol. 89(C), pages 181-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:390-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.