IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp556-569.html
   My bibliography  Save this article

Numerical investigation of blade tip grooving effect on performance and dynamics of an axial flow fan

Author

Listed:
  • Ye, Xuemin
  • Li, Pengmin
  • Li, Chunxi
  • Ding, Xueliang

Abstract

Appropriate changes to the blade tip structure can effectively improve fan performance. The performance of the OB-84 axial fan with different grooved blade tips is simulated using Fluent. The effects of various tip structures on the flow field, losses distribution, and noise characteristics are investigated. Analysis of static structure and vibration characteristics is performed with the Ansys finite element analysis module. Simulated results show that for the grooved blade tips, both the total pressure rise and shaft power of the fan decrease, but the efficiency improves distinctly; the grooved blade tip structure perturbs the flow and vortex fields and impedes the development of the leakage flow; this eventually results in the reduction of mixing losses between the leakage flow and mainstream. Blade tip case 4 produces the maximum efficiency with an increase of 1.07% at design volume flow rate, and case 7 obtains the lowest shaft power compared with the original tip. Grooved blade tips amplify the fan noise, so measures should be taken to control the noise. Analysis of dynamic characteristics reveals that the distortion and fracture failure of the blade as well as resonance of the impeller would not occur by adopting grooved blade tips.

Suggested Citation

  • Ye, Xuemin & Li, Pengmin & Li, Chunxi & Ding, Xueliang, 2015. "Numerical investigation of blade tip grooving effect on performance and dynamics of an axial flow fan," Energy, Elsevier, vol. 82(C), pages 556-569.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:556-569
    DOI: 10.1016/j.energy.2015.01.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215000894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.01.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Filios, A.E. & Tachos, N.S. & Fragias, A.P. & Margaris, D.P., 2007. "Broadband noise radiation analysis for an HAWT rotor," Renewable Energy, Elsevier, vol. 32(9), pages 1497-1510.
    2. Gao, Jie & Zheng, Qun & Zhang, Zhengyi & Jiang, Yuting, 2014. "Aero-thermal performance improvements of unshrouded turbines through management of tip leakage and injection flows," Energy, Elsevier, vol. 69(C), pages 648-660.
    3. Shuhei Takahashi & Yuya Hata & Yuji Ohya & Takashi Karasudani & Takanori Uchida, 2012. "Behavior of the Blade Tip Vortices of a Wind Turbine Equipped with a Brimmed-Diffuser Shroud," Energies, MDPI, vol. 5(12), pages 1-14, December.
    4. He, Weifeng & Dai, Yiping & Zhu, Shi & Han, Dong & Yue, Chen & Pu, Wenhao, 2013. "Influence from the blade installation angle of the windward axial fans on the performance of an air-cooled power plant," Energy, Elsevier, vol. 60(C), pages 416-425.
    5. Li, Chunxi & Li, Xinying & Li, Pengmin & Ye, Xuemin, 2014. "Numerical investigation of impeller trimming effect on performance of an axial flow fan," Energy, Elsevier, vol. 75(C), pages 534-548.
    6. Mohamed, M.H. & Shaaban, S., 2013. "Optimization of blade pitch angle of an axial turbine used for wave energy conversion," Energy, Elsevier, vol. 56(C), pages 229-239.
    7. Park, Jun Su & Lee, Dong Hyun & Rhee, Dong-Ho & Kang, Shin Hyung & Cho, Hyung Hee, 2014. "Heat transfer and film cooling effectiveness on the squealer tip of a turbine blade," Energy, Elsevier, vol. 72(C), pages 331-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    2. Ye, Xuemin & Ding, Xueliang & Zhang, Jiankun & Li, Chunxi, 2017. "Numerical simulation of pressure pulsation and transient flow field in an axial flow fan," Energy, Elsevier, vol. 129(C), pages 185-200.
    3. Xuemin Ye & Fuwei Fan & Ruixing Zhang & Chunxi Li, 2019. "Prediction of Performance of a Variable-Pitch Axial Fan with Forward-Skewed Blades," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Ameur, Houari, 2015. "Energy efficiency of different impellers in stirred tank reactors," Energy, Elsevier, vol. 93(P2), pages 1980-1988.
    5. Yonggang Gou & Xiuzhi Shi & Jian Zhou & Xianyang Qiu & Xin Chen, 2017. "Characterization and Effects of the Shock Losses in a Parallel Fan Station in the Underground Mine," Energies, MDPI, vol. 10(6), pages 1-20, June.
    6. Zhang, Lei & He, Ruiyang & Wang, Xin & Zhang, Qian & Wang, Songling, 2019. "Study on static and dynamic characteristics of an axial fan with abnormal blade under rotating stall conditions," Energy, Elsevier, vol. 170(C), pages 305-325.
    7. Wang, Youhao & Sun, Lihui & Guo, Chang & He, Suoying & Gao, Ming & Xu, Qinghua & Zhang, Qiang, 2023. "Vibration characteristics and strength analysis of two-stage variable-pitch axial-flow fan based on fluid-solid coupling method," Energy, Elsevier, vol. 284(C).
    8. Ziqian Xu & Xiaomin Liu & Yang Liu & Wanxiang Qin & Guang Xi, 2022. "Flow Control Mechanism of Blade Tip Bionic Grooves and Their Influence on Aerodynamic Performance and Noise of Multi-Blade Centrifugal Fan," Energies, MDPI, vol. 15(9), pages 1-20, May.
    9. Ye, Xuemin & Zhang, Jiankun & Li, Chunxi, 2017. "Effect of blade tip pattern on performance of a twin-stage variable-pitch axial fan," Energy, Elsevier, vol. 126(C), pages 535-563.
    10. Wang, Yuelan & Ma, Zengyi & Shen, Yueliang & Tang, Yijun & Ni, Mingjiang & Chi, Yong & Yan, Jianhua & Cen, Kefa, 2016. "A power-saving control strategy for reducing the total pressure applied by the primary air fan of a coal-fired power plant," Applied Energy, Elsevier, vol. 175(C), pages 380-388.
    11. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    12. Ye, Xuemin & Zheng, Nan & Hu, Jiami & Li, Chunxi & Xue, Zhanpu, 2022. "Numerical investigation of the benefits of serrated Gurney flaps on an axial flow fan," Energy, Elsevier, vol. 252(C).
    13. Han, Yadong & Liu, Yabin & Tan, Lei, 2022. "Method of variable-depth groove on vortex and cavitation suppression for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 199(C), pages 546-559.
    14. Liu, Yabin & Tan, Lei, 2018. "Method of C groove on vortex suppression and energy performance improvement for a NACA0009 hydrofoil with tip clearance in tidal energy," Energy, Elsevier, vol. 155(C), pages 448-461.
    15. Baocheng Zhou & Shaochun Ma & Weiqing Li & Wenzhi Li & Cong Peng, 2023. "Study on the Influence Mechanism of Energy Consumption of Sugarcane Harvester Extractor by Fluid Simulation and Experiment," Agriculture, MDPI, vol. 13(9), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Chunxi & Li, Xinying & Li, Pengmin & Ye, Xuemin, 2014. "Numerical investigation of impeller trimming effect on performance of an axial flow fan," Energy, Elsevier, vol. 75(C), pages 534-548.
    2. Gao, Jie & Zheng, Qun & Xu, Tianbang & Dong, Ping, 2015. "Inlet conditions effect on tip leakage vortex breakdown in unshrouded axial turbines," Energy, Elsevier, vol. 91(C), pages 255-263.
    3. Mohamed, M.H., 2014. "Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines," Energy, Elsevier, vol. 65(C), pages 596-604.
    4. Zou, Zhengping & Shao, Fei & Li, Yiran & Zhang, Weihao & Berglund, Albin, 2017. "Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance," Energy, Elsevier, vol. 138(C), pages 167-184.
    5. Mohamed, M.H., 2016. "Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (Computational Fluid Dynamics) techniques," Energy, Elsevier, vol. 96(C), pages 531-544.
    6. Ye, Xuemin & Zhang, Jiankun & Li, Chunxi, 2017. "Effect of blade tip pattern on performance of a twin-stage variable-pitch axial fan," Energy, Elsevier, vol. 126(C), pages 535-563.
    7. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    8. Su, Jie & Lei, Hang & Zhou, Dai & Han, Zhaolong & Bao, Yan & Zhu, Hongbo & Zhou, Lei, 2019. "Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 141(C), pages 559-569.
    9. Rulik, Sebastian & Wróblewski, Włodzimierz & Nowak, Grzegorz & Szwedowicz, Jarosław, 2015. "Heat transfer intensification using acoustic waves in a cavity," Energy, Elsevier, vol. 87(C), pages 21-30.
    10. Paresh Halder & Hideki Takebe & Krisna Pawitan & Jun Fujita & Shuji Misumi & Tsumoru Shintake, 2020. "Turbine Characteristics of Wave Energy Conversion Device for Extraction Power Using Breaking Waves," Energies, MDPI, vol. 13(4), pages 1-17, February.
    11. Cheng, Zhi & Lien, Fue-Sang & Yee, Eugene & Meng, Hang, 2022. "A unified framework for aeroacoustics simulation of wind turbines," Renewable Energy, Elsevier, vol. 188(C), pages 299-319.
    12. Xu, Wei & Chen, Genglin & Shi, Huijin & Zhang, Pengcheng & Chen, Xuemei, 2023. "Research on operational characteristics of coal power centrifugal fans at off-design working conditions based on flap-angle adjustment," Energy, Elsevier, vol. 284(C).
    13. Ramadan, A. & Mohamed, M.H. & Marzok, S.Y. & Montasser, O.A. & El Feky, A. & El Baz, A.R., 2014. "An artificial generation of a few specific wave conditions: New simulator design and experimental performance," Energy, Elsevier, vol. 69(C), pages 309-318.
    14. Krzysztof Kołodziejczyk & Radosław Ptak, 2022. "Numerical Investigations of the Vertical Axis Wind Turbine with Guide Vane," Energies, MDPI, vol. 15(22), pages 1-14, November.
    15. Ahmad I. Elshamy & Engy Elshazly & Olugbenga Timo Oladinrin & Muhammad Qasim Rana & Rasha Said Abd el-Lateef & Seif Tarek El-Badry & Mahmoud Elthakaby & Ahmed M. R. Elbaz & Khaled Dewidar & Iman El-Ma, 2022. "Challenges and Opportunities for Integrating RE Systems in Egyptian Building Stocks," Energies, MDPI, vol. 15(23), pages 1-23, November.
    16. Das, Tapas K. & Kumar, Kumud & Samad, Abdus, 2020. "Experimental Analysis of a Biplane Wells Turbine under Different Load Conditions," Energy, Elsevier, vol. 206(C).
    17. Katsaprakakis, Dimitris Al., 2012. "A review of the environmental and human impacts from wind parks. A case study for the Prefecture of Lasithi, Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2850-2863.
    18. Silva, Paulo A.S.F. & Tsoutsanis, Panagiotis & Vaz, Jerson R.P. & Macias, Marianela M., 2024. "A comprehensive CFD investigation of tip vortex trajectory in shrouded wind turbines using compressible RANS solver," Energy, Elsevier, vol. 294(C).
    19. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    20. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:556-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.