IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v89y2015icp730-738.html
   My bibliography  Save this article

Numerical prediction of pressure pulsation for a low head bidirectional tidal bulb turbine

Author

Listed:
  • Luo, Yongyao
  • Wang, Zhengwei
  • Liu, Xin
  • Xiao, Yexiang
  • Chen, Changkun
  • Wang, Haoping
  • Yan, Jianhua

Abstract

The present paper aims to find out the relationship between pressure pulsations and operation mode, water head for a low head bidirectional tidal bulb turbine. 3D unsteady numerical simulations were performed and the accuracy of the method can meet the requirements of practical applications by comparing calculated results with the experimental data. The simulation results indicate that for a low head tidal bulb, runner rotational frequency (fn) is the major component of the pressure pulsations both in vaneless space or rotor zone. The intensity of this dominant frequency is influenced by gravity effect or secondary flow, which depends on the specific operation mode and location. In the rotational zone from guide vanes to blades, the flow is largely affected by gravity effect not water head, which result in the amplitudes with dominant frequency increase with rotational radius in ebb and flood modes. On the contrary, in the rotational zone from blades to diffusion tube, there is obvious secondary flow. Therefore, the amplitudes with dominant frequency is ruled by head change instead of gravity effect in ebb and flood modes.

Suggested Citation

  • Luo, Yongyao & Wang, Zhengwei & Liu, Xin & Xiao, Yexiang & Chen, Changkun & Wang, Haoping & Yan, Jianhua, 2015. "Numerical prediction of pressure pulsation for a low head bidirectional tidal bulb turbine," Energy, Elsevier, vol. 89(C), pages 730-738.
  • Handle: RePEc:eee:energy:v:89:y:2015:i:c:p:730-738
    DOI: 10.1016/j.energy.2015.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215007707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaineux, Marie-Claire & Charlier, Roger H., 2008. "Women's tidal power plant Forty candles for Kislaya Guba TPP," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2515-2524, December.
    2. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang, 2010. "Impact of different operating modes for a Severn Barrage on the tidal power and flood inundation in the Severn Estuary, UK," Applied Energy, Elsevier, vol. 87(7), pages 2374-2391, July.
    3. Lee, Dal Soo & Oh, Sang-Ho & Yi, Jin-Hak & Park, Woo-Sun & Cho, Hyu-Sang & Kim, Duk-Gu & Eom, Hyun-Min & Ahn, Suk-Jin, 2010. "Experimental investigation on the relationship between sluice caisson shape of tidal power plant and the water discharge capability," Renewable Energy, Elsevier, vol. 35(10), pages 2243-2256.
    4. Ferreira, Rafael M. & Estefen, Segen F., 2009. "Alternative concept for tidal power plant with reservoir restrictions," Renewable Energy, Elsevier, vol. 34(4), pages 1151-1157.
    5. Charlier, Roger H., 2007. "Forty candles for the Rance River TPP tides provide renewable and sustainable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 2032-2057, December.
    6. Wang, Shujie & Yuan, Peng & Li, Dong & Jiao, Yuhe, 2011. "An overview of ocean renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 91-111, January.
    7. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahn, Soo-Hwang & Tian, Hong & Cao, Jingwei & Duo, Wenzhi & Wang, Zhengwei & Cui, Jianhua & Chen, Lin & Li, Yang & Huang, Guoping & Yu, Yunpeng, 2023. "Hydraulic performances of a bulb turbine with full field reservoir model based on entropy production analysis," Renewable Energy, Elsevier, vol. 211(C), pages 347-360.
    2. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Performance prediction of a prototype tidal power turbine by using a suitable numerical model," Renewable Energy, Elsevier, vol. 113(C), pages 293-302.
    3. Guo, Qiang & Zhou, Lingjiu & Wang, Zhengwei, 2016. "Numerical evaluation of the clearance geometries effect on the flow field and performance of a hydrofoil," Renewable Energy, Elsevier, vol. 99(C), pages 390-397.
    4. Gabl, Roman & Innerhofer, Daniel & Achleitner, Stefan & Righetti, Maurizio & Aufleger, Markus, 2018. "Evaluation criteria for velocity distributions in front of bulb hydro turbines," Renewable Energy, Elsevier, vol. 121(C), pages 745-756.
    5. Huang, Zhenwei & Huang, Zhenyou & Fan, Honggang, 2020. "Influence of C groove on energy performance and noise source of a NACA0009 hydrofoil with tip clearance," Renewable Energy, Elsevier, vol. 159(C), pages 726-735.
    6. Liu, Yabin & Tan, Lei, 2020. "Influence of C groove on suppressing vortex and cavitation for a NACA0009 hydrofoil with tip clearance in tidal energy," Renewable Energy, Elsevier, vol. 148(C), pages 907-922.
    7. Ahn, Soo-Hwang & Xiao, Yexiang & Wang, Zhengwei & Zhou, Xuezhi & Luo, Yongyao, 2017. "Numerical prediction on the effect of free surface vortex on intake flow characteristics for tidal power station," Renewable Energy, Elsevier, vol. 101(C), pages 617-628.
    8. Ahn, Soo-Hwang & Zhou, Xuezhi & He, Lingyan & Luo, Yongyao & Wang, Zhengwei, 2020. "Numerical estimation of prototype hydraulic efficiency in a low head power station based on gross head conditions," Renewable Energy, Elsevier, vol. 153(C), pages 175-181.
    9. Linghua Kong & Jingwei Cao & Xiangyang Li & Xulei Zhou & Haihong Hu & Tao Wang & Shuxin Gui & Wenfa Lai & Zhongfeng Zhu & Zhengwei Wang & Yan Liu, 2022. "Numerical Analysis on the Hydraulic Thrust and Dynamic Response Characteristics of a Turbine Pump," Energies, MDPI, vol. 15(4), pages 1-15, February.
    10. Shi, Guangtai & Liu, Zongku & Xiao, Yexiang & Wang, Zhengwei & Luo, Yongyao & Luo, Kun, 2020. "Energy conversion characteristics of multiphase pump impeller analyzed based on blade load spectra," Renewable Energy, Elsevier, vol. 157(C), pages 9-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia, Junqiang & Falconer, Roger A. & Lin, Binliang & Tan, Guangming, 2012. "Estimation of annual energy output from a tidal barrage using two different methods," Applied Energy, Elsevier, vol. 93(C), pages 327-336.
    2. Li, Ying & Pan, Dong-Zi, 2017. "The ebb and flow of tidal barrage development in Zhejiang Province, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 380-389.
    3. Neill, Simon P. & Angeloudis, Athanasios & Robins, Peter E. & Walkington, Ian & Ward, Sophie L. & Masters, Ian & Lewis, Matt J. & Piano, Marco & Avdis, Alexandros & Piggott, Matthew D. & Aggidis, Geor, 2018. "Tidal range energy resource and optimization – Past perspectives and future challenges," Renewable Energy, Elsevier, vol. 127(C), pages 763-778.
    4. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    5. Yongyao Luo & Xin Liu & Zhengwei Wang & Yexiang Xiao & Chenglian He & Yiyang Zhang, 2017. "Optimization of the Runner for Extremely Low Head Bidirectional Tidal Bulb Turbine," Energies, MDPI, vol. 10(6), pages 1-13, June.
    6. Angeloudis, Athanasios & Kramer, Stephan C. & Avdis, Alexandros & Piggott, Matthew D., 2018. "Optimising tidal range power plant operation," Applied Energy, Elsevier, vol. 212(C), pages 680-690.
    7. Obara, Shin’ya & Kawai, Masahito & Kawae, Osamu & Morizane, Yuta, 2013. "Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics," Applied Energy, Elsevier, vol. 102(C), pages 1343-1357.
    8. Fairley, I. & Ahmadian, R. & Falconer, R.A. & Willis, M.R. & Masters, I., 2014. "The effects of a Severn Barrage on wave conditions in the Bristol Channel," Renewable Energy, Elsevier, vol. 68(C), pages 428-442.
    9. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    10. Lisboa, A.C. & Vieira, T.L. & Guedes, L.S.M. & Vieira, D.A.G. & Saldanha, R.R., 2017. "Optimal analytic dispatch for tidal energy generation," Renewable Energy, Elsevier, vol. 108(C), pages 371-379.
    11. Angeloudis, Athanasios & Ahmadian, Reza & Falconer, Roger A. & Bockelmann-Evans, Bettina, 2016. "Numerical model simulations for optimisation of tidal lagoon schemes," Applied Energy, Elsevier, vol. 165(C), pages 522-536.
    12. Calero Quesada, María Concepción & García Lafuente, Jesús & Sánchez Garrido, José Carlos & Sammartino, Simone & Delgado, Javier, 2014. "Energy of marine currents in the Strait of Gibraltar and its potential as a renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 98-109.
    13. Hooper, Tara & Austen, Melanie, 2013. "Tidal barrages in the UK: Ecological and social impacts, potential mitigation, and tools to support barrage planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 289-298.
    14. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. O Rourke, Fergal & Boyle, Fergal & Reynolds, Anthony, 2010. "Tidal energy update 2009," Applied Energy, Elsevier, vol. 87(2), pages 398-409, February.
    16. Park, Young Hyun, 2017. "Analysis of characteristics of Dynamic Tidal Power on the west coast of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 461-474.
    17. Faridnia, N. & Habibi, D. & Lachowicz, S. & Kavousifard, A., 2019. "Optimal scheduling in a microgrid with a tidal generation," Energy, Elsevier, vol. 171(C), pages 435-443.
    18. Marta-Almeida, Martinho & Cirano, Mauro & Guedes Soares, Carlos & Lessa, Guilherme C., 2017. "A numerical tidal stream energy assessment study for Baía de Todos os Santos, Brazil," Renewable Energy, Elsevier, vol. 107(C), pages 271-287.
    19. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    20. Amelio, Mario & Barbarelli, Silvio & Florio, Gaetano & Scornaienchi, Nino Michele & Minniti, Giovanni & Cutrupi, Antonino & Sánchez-Blanco, Manuel, 2012. "Innovative tidal turbine with central deflector for the exploitation of river and sea currents in on-shore installations," Applied Energy, Elsevier, vol. 97(C), pages 944-955.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:89:y:2015:i:c:p:730-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.