IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp775-788.html
   My bibliography  Save this article

Frequency-domain hydrodynamic modelling of dense and sparse arrays of wave energy converters

Author

Listed:
  • Wei, Y.
  • Barradas-Berglind, J.J.
  • Yu, Z.
  • van Rooij, M.
  • Prins, W.A.
  • Jayawardhana, B.
  • Vakis, A.I.

Abstract

In this work, we develop a frequency-domain model to study the hydrodynamic behaviour of a floater blanket (FB), i.e., an array of floater elements individually connected to power take-off (PTO) systems, which constitutes the core technology of the novel Ocean Grazer (OG) wave energy converter (WEC). The boundary element method open-source code NEMOH is used to solve the scattering and radiation problem. The aforementioned floater elements that comprise the FB are mechanically interconnected via (cylindrical, revolutional or spring) joints, which add extra constraint equations to the multibody problem. Various scenarios are investigated to understand the hydrodynamic response of the FB. The variation of the capture factor, PTO damping coefficients, q-factor and response amplitude operator (RAO) of each scenario are analysed, in order to quantify the device performance. A new concept based on a negative-stiffness spring joint is proposed to increase the energy output of the FB. Attention is also paid to the anti-resonance that is found in the numerical simulations. This study provides further insight into the hydrodynamic behaviour of dense or sparse interconnected arrays of WECs, which is fundamental for the design and optimisation of the OG-WEC.

Suggested Citation

  • Wei, Y. & Barradas-Berglind, J.J. & Yu, Z. & van Rooij, M. & Prins, W.A. & Jayawardhana, B. & Vakis, A.I., 2019. "Frequency-domain hydrodynamic modelling of dense and sparse arrays of wave energy converters," Renewable Energy, Elsevier, vol. 135(C), pages 775-788.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:775-788
    DOI: 10.1016/j.renene.2018.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314538
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vakis, Antonis I. & Anagnostopoulos, John S., 2016. "Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter," Renewable Energy, Elsevier, vol. 96(PA), pages 531-547.
    2. Wei, Y. & Barradas-Berglind, J.J. & van Rooij, M. & Prins, W.A. & Jayawardhana, B. & Vakis, A.I., 2017. "Investigating the adaptability of the multi-pump multi-piston power take-off system for a novel wave energy converter," Renewable Energy, Elsevier, vol. 111(C), pages 598-610.
    3. Sinha, Ashank & Karmakar, D. & Guedes Soares, C., 2016. "Performance of optimally tuned arrays of heaving point absorbers," Renewable Energy, Elsevier, vol. 92(C), pages 517-531.
    4. Sarkar, Dripta & Doherty, Kenneth & Dias, Frederic, 2016. "The modular concept of the Oscillating Wave Surge Converter," Renewable Energy, Elsevier, vol. 85(C), pages 484-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Michele & Federica Buriani & Emiliano Renzi & Marijn van Rooij & Bayu Jayawardhana & Antonis I. Vakis, 2020. "Wave Energy Extraction by Flexible Floaters," Energies, MDPI, vol. 13(23), pages 1-24, November.
    2. Bechlenberg, Alva & Wei, Yanji & Jayawardhana, Bayu & Vakis, Antonis I., 2023. "Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays," Renewable Energy, Elsevier, vol. 211(C), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bechlenberg, Alva & Wei, Yanji & Jayawardhana, Bayu & Vakis, Antonis I., 2023. "Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays," Renewable Energy, Elsevier, vol. 211(C), pages 1-12.
    2. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    3. Collins, Ieuan & Hossain, Mokarram & Dettmer, Wulf & Masters, Ian, 2021. "Flexible membrane structures for wave energy harvesting: A review of the developments, materials and computational modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Calvário, M. & Gaspar, J.F. & Kamarlouei, M. & Hallak, T.S. & Guedes Soares, C., 2020. "Oil-hydraulic power take-off concept for an oscillating wave surge converter," Renewable Energy, Elsevier, vol. 159(C), pages 1297-1309.
    5. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    6. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    7. Sarkar, Dripta & Contal, Emile & Vayatis, Nicolas & Dias, Frederic, 2016. "Prediction and optimization of wave energy converter arrays using a machine learning approach," Renewable Energy, Elsevier, vol. 97(C), pages 504-517.
    8. Gao, Hong & Yu, Yang, 2018. "The dynamics and power absorption of cone-cylinder wave energy converters with three degree of freedom in irregular waves," Energy, Elsevier, vol. 143(C), pages 833-845.
    9. Sun, Pengyuan & Liu, Senming & He, Hongzhou & Zhao, Yingru & Zheng, Songgen & Chen, Hu & Yang, Shaohui, 2021. "Simulated and experimental investigation of a floating-array-buoys wave energy converter with single-point mooring," Renewable Energy, Elsevier, vol. 176(C), pages 637-650.
    10. He, Guanghua & Luan, Zhengxiao & Jin, Ruijia & Zhang, Wei & Wang, Wei & Zhang, Zhigang & Jing, Penglin & Liu, Pengfei, 2022. "Numerical and experimental study on absorber-type wave energy converters concentrically arranged on an octagonal platform," Renewable Energy, Elsevier, vol. 188(C), pages 504-523.
    11. Rony, J.S. & Karmakar, D., 2024. "Hydrodynamic response analysis of a hybrid TLP and heaving-buoy wave energy converter with PTO damping," Renewable Energy, Elsevier, vol. 226(C).
    12. Wang, Yize & Liu, Zhenqing, 2021. "Proposal of novel analytical wake model and GPU-accelerated array optimization method for oscillating wave surge energy converter," Renewable Energy, Elsevier, vol. 179(C), pages 563-583.
    13. Piscopo, V. & Benassai, G. & Della Morte, R. & Scamardella, A., 2020. "Towards a unified formulation of time and frequency-domain models for point absorbers with single and double-body configuration," Renewable Energy, Elsevier, vol. 147(P1), pages 1525-1539.
    14. Gianmaria Giannini & Paulo Rosa-Santos & Victor Ramos & Francisco Taveira-Pinto, 2020. "On the Development of an Offshore Version of the CECO Wave Energy Converter," Energies, MDPI, vol. 13(5), pages 1-24, February.
    15. Han, Meng & Cao, Feifei & Shi, Hongda & Zhu, Kai & Dong, Xiaochen & Li, Demin, 2023. "Layout optimisation of the two-body heaving wave energy converter array," Renewable Energy, Elsevier, vol. 205(C), pages 410-431.
    16. Battisti, Beatrice & Giorgi, Giuseppe & Fernandez, Gael Verao, 2024. "Balancing power production and coastal protection: A bi-objective analysis of Wave Energy Converters," Renewable Energy, Elsevier, vol. 220(C).
    17. Chow, Yi-Chih & Chang, Yu-Chi & Chen, Da-Wei & Lin, Chen-Chou & Tzang, Shiaw-Yih, 2018. "Parametric design methodology for maximizing energy capture of a bottom-hinged flap-type WEC with medium wave resources," Renewable Energy, Elsevier, vol. 126(C), pages 605-616.
    18. Wei, Yujia & Wang, Chao & Chen, Wenchuang & Huang, Luofeng, 2024. "Array analysis on a seawall type of deformable wave energy converters," Renewable Energy, Elsevier, vol. 225(C).
    19. Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).
    20. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:775-788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.