IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v89y2016icp60-70.html
   My bibliography  Save this article

Discrepancy study of modal parameters of a scale jacket-type supporting structure of 3.0-MW offshore wind turbine in water and in air

Author

Listed:
  • Liu, Fushun
  • Yang, Qi
  • Li, Huajun
  • Li, Wei
  • Wang, Bin

Abstract

The discrepancy of modal parameters of a scale offshore wind turbine is studied by using the proposed assessment method. One theoretical development is that weak genuine modes can be separated from strong noisy modes; and the other is the size of the reconstructed Hankel matrix will not be changed to ensure the comparability of modal parameters from different scenarios. A numerical signal is synthesized to demonstrate the proposed method. Numerical results indicate that the approach can isolate the two genuine modal parameters respectively, by applying estimated pass band with a 2 by 2 Hankel matrix of the Eigensystem Realization Algorithm, which means it can be used as a criterion to assess modal parameters from different scenarios. An experiment with model scale 15 from a 3.0-MW offshore wind turbine is tested. Experimental results indicate that natural frequencies are considerably reduced and damping ratios are increased, with the rate of frequency change varies from 15.33% to 17.97%. The modal parameters obtained in water with waves are close to those obtained in still water even if the structure is excited by a hammer or waves. The modal parameters estimated from the reconstructed responses of different accelerometers are in excellent agreement.

Suggested Citation

  • Liu, Fushun & Yang, Qi & Li, Huajun & Li, Wei & Wang, Bin, 2016. "Discrepancy study of modal parameters of a scale jacket-type supporting structure of 3.0-MW offshore wind turbine in water and in air," Renewable Energy, Elsevier, vol. 89(C), pages 60-70.
  • Handle: RePEc:eee:renene:v:89:y:2016:i:c:p:60-70
    DOI: 10.1016/j.renene.2015.11.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115304948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.11.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Fushun & Li, Huajun & Li, Wei & Wang, Bin, 2014. "Experimental study of improved modal strain energy method for damage localisation in jacket-type offshore wind turbines," Renewable Energy, Elsevier, vol. 72(C), pages 174-181.
    2. Feng, Zhipeng & Qin, Sifeng & Liang, Ming, 2016. "Time–frequency analysis based on Vold-Kalman filter and higher order energy separation for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions," Renewable Energy, Elsevier, vol. 85(C), pages 45-56.
    3. Helsen, J. & Devriendt, C. & Weijtjens, W. & Guillaume, P., 2016. "Experimental dynamic identification of modeshape driving wind turbine grid loss event on nacelle testrig," Renewable Energy, Elsevier, vol. 85(C), pages 259-272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    2. Chen, Hansi & Liu, Hang & Chu, Xuening & Liu, Qingxiu & Xue, Deyi, 2021. "Anomaly detection and critical SCADA parameters identification for wind turbines based on LSTM-AE neural network," Renewable Energy, Elsevier, vol. 172(C), pages 829-840.
    3. Jamil, Faras & Verstraeten, Timothy & Nowé, Ann & Peeters, Cédric & Helsen, Jan, 2022. "A deep boosted transfer learning method for wind turbine gearbox fault detection," Renewable Energy, Elsevier, vol. 197(C), pages 331-341.
    4. Verstraeten, Timothy & Nowé, Ann & Keller, Jonathan & Guo, Yi & Sheng, Shuangwen & Helsen, Jan, 2019. "Fleetwide data-enabled reliability improvement of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 428-437.
    5. Lorenzo Alessi & José A. F. O. Correia & Nicholas Fantuzzi, 2019. "Initial Design Phase and Tender Designs of a Jacket Structure Converted into a Retrofitted Offshore Wind Turbine," Energies, MDPI, vol. 12(4), pages 1-28, February.
    6. Chen, Junsheng & Li, Jian & Chen, Weigen & Wang, Youyuan & Jiang, Tianyan, 2020. "Anomaly detection for wind turbines based on the reconstruction of condition parameters using stacked denoising autoencoders," Renewable Energy, Elsevier, vol. 147(P1), pages 1469-1480.
    7. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    8. Stefan Jonas & Dimitrios Anagnostos & Bernhard Brodbeck & Angela Meyer, 2023. "Vibration Fault Detection in Wind Turbines Based on Normal Behaviour Models without Feature Engineering," Energies, MDPI, vol. 16(4), pages 1-16, February.
    9. Sakaris, Christos S. & Yang, Yang & Bashir, Musa & Michailides, Constantine & Wang, Jin & Sakellariou, John S. & Li, Chun, 2021. "Structural health monitoring of tendons in a multibody floating offshore wind turbine under varying environmental and operating conditions," Renewable Energy, Elsevier, vol. 179(C), pages 1897-1914.
    10. Xin, Ge & Hamzaoui, Nacer & Antoni, Jérôme, 2020. "Extraction of second-order cyclostationary sources by matching instantaneous power spectrum with stochastic model – application to wind turbine gearbox," Renewable Energy, Elsevier, vol. 147(P1), pages 1739-1758.
    11. Pan, Yubin & Hong, Rongjing & Chen, Jie & Wu, Weiwei, 2020. "A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox," Renewable Energy, Elsevier, vol. 152(C), pages 138-154.
    12. Zhang, Chen & Hu, Di & Yang, Tao, 2022. "Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. de Bessa, Iury Valente & Palhares, Reinaldo Martinez & D'Angelo, Marcos Flávio Silveira Vasconcelos & Chaves Filho, João Edgar, 2016. "Data-driven fault detection and isolation scheme for a wind turbine benchmark," Renewable Energy, Elsevier, vol. 87(P1), pages 634-645.
    14. Rezaei, Mohammad M. & Behzad, Mehdi & Moradi, Hamed & Haddadpour, Hassan, 2016. "Modal-based damage identification for the nonlinear model of modern wind turbine blade," Renewable Energy, Elsevier, vol. 94(C), pages 391-409.
    15. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    16. Kilic, Gokhan & Unluturk, Mehmet S., 2015. "Testing of wind turbine towers using wireless sensor network and accelerometer," Renewable Energy, Elsevier, vol. 75(C), pages 318-325.
    17. Elforjani, Mohamed, 2020. "Diagnosis and prognosis of real world wind turbine gears," Renewable Energy, Elsevier, vol. 147(P1), pages 1676-1693.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:89:y:2016:i:c:p:60-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.