IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp331-341.html
   My bibliography  Save this article

A deep boosted transfer learning method for wind turbine gearbox fault detection

Author

Listed:
  • Jamil, Faras
  • Verstraeten, Timothy
  • Nowé, Ann
  • Peeters, Cédric
  • Helsen, Jan

Abstract

Deep learning methods have become popular among researchers in the field of fault detection. However, their performance depends on the availability of big datasets. To overcome this problem researchers started applying transfer learning to achieve good performance from small available datasets, by leveraging multiple prediction models over similar machines and working conditions. However, the influence of negative transfer limits their application. Negative transfer among prediction models increases when the environment and working conditions are changing continuously. To overcome the effect of negative transfer, we propose a novel deep transfer learning method, coined deep boosted transfer learning, for wind turbine gearbox fault detection that prevents negative transfer and only focuses on relevant information from the source machine. The proposed method is an instance-based deep transfer learning method that updates the weights of the source and the target machine training samples separately. The weights of different source training samples are gradually decreased to reduce the impact on the final model. The proposed method is verified by the Case Western Reserve University bearing and real field wind farm datasets. The results show that the proposed method ignores negative transfer and achieves higher accuracy compared to standard deep learning and deep transfer learning methods.

Suggested Citation

  • Jamil, Faras & Verstraeten, Timothy & Nowé, Ann & Peeters, Cédric & Helsen, Jan, 2022. "A deep boosted transfer learning method for wind turbine gearbox fault detection," Renewable Energy, Elsevier, vol. 197(C), pages 331-341.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:331-341
    DOI: 10.1016/j.renene.2022.07.117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812201134X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verstraeten, Timothy & Nowé, Ann & Keller, Jonathan & Guo, Yi & Sheng, Shuangwen & Helsen, Jan, 2019. "Fleetwide data-enabled reliability improvement of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 428-437.
    2. Jialin Li & Xueyi Li & David He & Yongzhi Qu, 2020. "A domain adaptation model for early gear pitting fault diagnosis based on deep transfer learning network," Journal of Risk and Reliability, , vol. 234(1), pages 168-182, February.
    3. Irawan, Chandra Ade & Ouelhadj, Djamila & Jones, Dylan & Stålhane, Magnus & Sperstad, Iver Bakken, 2017. "Optimisation of maintenance routing and scheduling for offshore wind farms," European Journal of Operational Research, Elsevier, vol. 256(1), pages 76-89.
    4. Helsen, J. & Devriendt, C. & Weijtjens, W. & Guillaume, P., 2016. "Experimental dynamic identification of modeshape driving wind turbine grid loss event on nacelle testrig," Renewable Energy, Elsevier, vol. 85(C), pages 259-272.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvio Simani & Saverio Farsoni & Paolo Castaldi, 2023. "RETRACTED: Supervisory Control and Data Acquisition for Fault Diagnosis of Wind Turbines via Deep Transfer Learning," Energies, MDPI, vol. 16(9), pages 1-22, April.
    2. Kangji Li & Borui Wei & Qianqian Tang & Yufei Liu, 2022. "A Data-Efficient Building Electricity Load Forecasting Method Based on Maximum Mean Discrepancy and Improved TrAdaBoost Algorithm," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Verstraeten, Timothy & Nowé, Ann & Keller, Jonathan & Guo, Yi & Sheng, Shuangwen & Helsen, Jan, 2019. "Fleetwide data-enabled reliability improvement of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 428-437.
    2. Chandra Ade Irawan & Dylan Jones, 2019. "Formulation and solution of a two-stage capacitated facility location problem with multilevel capacities," Annals of Operations Research, Springer, vol. 272(1), pages 41-67, January.
    3. Stock-Williams, Clym & Swamy, Siddharth Krishna, 2019. "Automated daily maintenance planning for offshore wind farms," Renewable Energy, Elsevier, vol. 133(C), pages 1393-1403.
    4. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    5. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    6. Rafael Dawid & David McMillan & Matthew Revie, 2018. "Decision Support Tool for Offshore Wind Farm Vessel Routing under Uncertainty," Energies, MDPI, vol. 11(9), pages 1-17, August.
    7. Zhang, Chen & Yang, Tao, 2021. "Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ," Renewable Energy, Elsevier, vol. 164(C), pages 1540-1549.
    8. Rasmus Dovnborg Frederiksen & Grzegorz Bocewicz & Grzegorz Radzki & Zbigniew Banaszak & Peter Nielsen, 2024. "Cost-Effectiveness of Predictive Maintenance for Offshore Wind Farms: A Case Study," Energies, MDPI, vol. 17(13), pages 1-24, June.
    9. Yürüşen, Nurseda Y. & Rowley, Paul N. & Watson, Simon J. & Melero, Julio J., 2020. "Automated wind turbine maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    10. Shuo-Yan Chou & Xuan Loc Pham & Thi Anh Tuyet Nguyen & Tiffany Hui-Kuang Yu, 2023. "Optimal maintenance planning with special emphasis on deterioration process and vessel routing for offshore wind systems," Energy & Environment, , vol. 34(4), pages 739-763, June.
    11. Pablo A. Miranda-Gonzalez & Javier Maturana-Ross & Carola A. Blazquez & Guillermo Cabrera-Guerrero, 2021. "Exact Formulation and Analysis for the Bi-Objective Insular Traveling Salesman Problem," Mathematics, MDPI, vol. 9(21), pages 1-33, October.
    12. Bakker, Steffen J. & Wang, Akang & Gounaris, Chrysanthos E., 2021. "Vehicle routing with endogenous learning: Application to offshore plug and abandonment campaign planning," European Journal of Operational Research, Elsevier, vol. 289(1), pages 93-106.
    13. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    14. Ade Irawan, Chandra & Starita, Stefano & Chan, Hing Kai & Eskandarpour, Majid & Reihaneh, Mohammad, 2023. "Routing in offshore wind farms: A multi-period location and maintenance problem with joint use of a service operation vessel and a safe transfer boat," European Journal of Operational Research, Elsevier, vol. 307(1), pages 328-350.
    15. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Chandra Ade Irawan & Majid Eskandarpour & Djamila Ouelhadj & Dylan Jones, 2019. "Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm," Post-Print hal-02509382, HAL.
    17. Gutierrez-Alcoba, A. & Hendrix, E.M.T. & Ortega, G. & Halvorsen-Weare, E.E. & Haugland, D., 2019. "On offshore wind farm maintenance scheduling for decision support on vessel fleet composition," European Journal of Operational Research, Elsevier, vol. 279(1), pages 124-131.
    18. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    19. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Xiaodong Li & Xiang Song & Djamila Ouelhadj, 2023. "A Cost Optimisation Model for Maintenance Planning in Offshore Wind Farms with Wind Speed Dependent Failure Rates," Mathematics, MDPI, vol. 11(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:331-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.